Oral delivery of peptides and biological molecules promises significant benefits to patients as an alternative to daily injections, but the development of these formulations is challenging due to their low bioavailability and high pharmacokinetic variability. Our earlier work focused on the discovery of MEDI7219, a stabilized, lipidated, glucagon-like peptide 1 agonist peptide, and the selection of sodium chenodeoxycholate (Na CDC) and propyl gallate (PG) as permeation enhancer combinations. We hereby describe the development of the MEDI7219 tablet formulations and composition optimization via in vivo studies in dogs.
View Article and Find Full Text PDFPeptide therapeutics are increasingly used in the treatment of disease, but their administration by injection reduces patient compliance and convenience, especially for chronic diseases. Thus, oral administration of a peptide therapeutic represents a significant advance in medicine, but is challenged by gastrointestinal instability and ineffective uptake into the circulation. Here, we have used glucagon-like peptide-1 (GLP-1) as a model peptide therapeutic for treating obesity-linked type 2 diabetes, a common chronic disease.
View Article and Find Full Text PDFOral delivery of peptides is a challenge due to their instability and their limited transport and absorption characteristics within the gastrointestinal tract. In this work, we used layering techniques in a fluidized bed dryer to create a configuration in which the active peptide, permeation enhancers, and polymers are coated to control the release of the peptide. Formulations were developed to disintegrate at pH values of 5.
View Article and Find Full Text PDFWe describe the development and evaluation of pyrrolobenzodiazepines (PBDs) in poly(dl-lactide-co-glycolide) and lipid nanoparticle drug delivery systems. We have established that the partition coefficient (LogP) of PBD is a key influencer of the encapsulation efficiency in nanoparticle systems, with higher LogP values associated with higher encapsulation efficiencies toward increased drug payload delivery and better antitumor efficacy. Cytotoxicity assays demonstrated that compounds with higher LogP values demonstrated higher 50% inhibitory concentration values than the free drug.
View Article and Find Full Text PDFJ Control Release
October 2018
Oral delivery of peptide therapeutics as a convenient alternate to injections has been an area of research for the pharmaceutical scientific community for the last several decades. However, systemic delivery of therapeutic peptides via the oral route has been a daunting task due to the low pH denaturation of the peptides in the stomach, enzymatic instability, and poor transport across the tight junctions resulting in very low bioavailability. The low bioavailability is accompanied by large intra- and inter-subject variability leading to translational issues, preventing the development of successful peptide therapeutics.
View Article and Find Full Text PDFIsothermal chemical denaturation (ICD) has been widely used to evaluate the conformational stability of therapeutic proteins such as monoclonal antibodies. However, the chemical unfolding pathway and the subsequent aggregation of antibodies are not yet well-understood. In the present work, we conducted a systematic study on an ICD-induced aggregation of a pharmaceutical monoclonal antibody.
View Article and Find Full Text PDFCrystallization of IgG antibodies has important applications in the fields of structural biology, biotechnology, and biopharmaceutics. However, a rational approach to crystallize antibodies is still lacking. In this work, we report a method to estimate the solubility of antibodies at various temperatures.
View Article and Find Full Text PDFThere is an increased incidence of diabetes worldwide. The discovery of insulin revolutionized the management of diabetes, the revelation of glucagon-like peptide-1 (GLP-1) and introduction of GLP-1 receptor agonists to clinical practice was another breakthrough. Continued translational research resulted in better understanding of diabetes, which, in combination with cutting-edge biology, chemistry, and pharmaceutical tools, have allowed for the development of safer, more effective and convenient insulins and GLP-1.
View Article and Find Full Text PDF