Understanding the consequences of the noncrossing constraint is one of the remaining challenges in the physics of walks and polymers. To address this problem, we performed molecular simulations for the separation of only two initially connected, overlapping polymer chains with interactions tuned such that they are nearly random walks. The separation time for a configuration strongly correlates with the number of monomer contacts between both chains.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2009
Cisplatin was incidentally discovered to suppress cell division and became one of the most successful antitumor drugs. It is therapeutically active upon binding to DNA and locally kinking it. We demonstrate that after a bimodal modeling, the degree of platination of a single DNA molecule can be consistently and reliably estimated from elasticity measurements performed with magnetic tweezers.
View Article and Find Full Text PDFNon-classical behaviour, brought about by a confinement that imposes spatial constraints on molecules, is opening avenues to novel applications. For example, carbon nanotubes, which show rapid and selective transport of small molecules across the nanotubes, have significant potential as biological or chemical separation materials for organic solvents or gaseous molecules. With polymers, when the dimensions of a confining volume are much less than the radius of gyration, a quantitative understanding of perturbations to chain dynamics due to geometric constraints remains a challenge and, with the development of nanofabrication processes, the dynamics of confined polymers have significant technological implications.
View Article and Find Full Text PDF