The protein encoded by the vaccinia virus gene has base excision repair uracil-DNA -glycosylase (vvUNG) activity and also acts as a processivity factor in the viral replication complex. The use of a protein unlike PolN/PCNA sliding clamps is a unique feature of orthopoxviral replication, providing an attractive target for drug design. However, the intrinsic processivity of vvUNG has never been estimated, leaving open the question whether it is sufficient to impart processivity to the viral polymerase.
View Article and Find Full Text PDFConsidering that vaccination against smallpox with live vaccinia virus led to serious adverse effects in some cases, the WHO, after declaration of the global eradication of smallpox in 1980, strongly recommended to discontinue the vaccination in all countries. This led to the loss of immunity against not only smallpox but also other zoonotic orthopoxvirus infections in humans over the past years. An increasing number of human infections with zoonotic orthopoxviruses and, first of all, monkeypox, force us to reconsider a possible re-emergence of smallpox or a similar disease as a result of natural evolution of these viruses.
View Article and Find Full Text PDFUracil-DNA glycosylases are enzymes that excise uracil bases appearing in DNA as a result of cytosine deamination or accidental dUMP incorporation from the dUTP pool. The activity of Family 1 uracil-DNA glycosylase (UNG) activity limits the efficiency of antimetabolite drugs and is essential for virulence in some bacterial and viral infections. Thus, UNG is regarded as a promising target for antitumor, antiviral, antibacterial, and antiprotozoal drugs.
View Article and Find Full Text PDFMass vaccination has played a critical role in the global eradication of smallpox. Various vaccinia virus (VACV) strains, whose origin has not been clearly documented in most cases, have been used as live vaccines in different countries. These VACV strains differed in pathogenicity towards various laboratory animals and in reactogenicity exhibited upon vaccination of humans.
View Article and Find Full Text PDFFollowing the WHO announcement of smallpox eradication, discontinuation of smallpox vaccination with vaccinia virus (VACV) was recommended. However, interest in VACV was soon renewed due to the opportunity of genetic engineering of the viral genome by directed insertion of foreign genes or introduction of mutations or deletions into selected viral genes. This genomic technology enabled production of stable attenuated VACV strains producing antigens of various infectious agents.
View Article and Find Full Text PDFThe mass smallpox vaccination campaign has played a crucial role in smallpox eradication. Various strains of the vaccinia virus (VACV) were used as a live smallpox vaccine in different countries, their origin being unknown in most cases. The VACV strains differ in terms of pathogenicity exhibited upon inoculation of laboratory animals and reactogenicity exhibited upon vaccination of humans.
View Article and Find Full Text PDFBackground: Large DNA poxviruses encode a diverse family of secreted proteins that modulate host inflammatory and antiviral responses, in particular by inhibiting one of the key players of the mammalian immune system, the tumor necrosis factor (TNF).
Methods: We investigated the effects of a recombinant variola (smallpox) virus TNF-decoy receptor (VARV-CrmB) in a murine model of contact dermatitis. Our results demonstrate that the VARV-CrmB protein significantly reduces the 2,4-dinitrochlorbenzene (DNCB)-induced migration of skin leukocytes during the sensitization phase and suppresses ear oedema during the elicitation phase of the contact reaction.
Smallpox was the first human disease to be eradicated, through a concerted vaccination campaign led by the World Health Organization. Since its eradication, routine vaccination against smallpox has ceased, leaving the world population susceptible to disease caused by orthopoxviruses. In recent decades, reports of human disease from zoonotic orthopoxviruses have increased.
View Article and Find Full Text PDFA method of one-stage rapid detection and differentiation of epidemiologically important variola virus (VARV), monkeypox virus (MPXV), and varicella-zoster virus (VZV) utilizing multiplex real-time TaqMan PCR assay was developed. Four hybridization probes with various fluorescent dyes and the corresponding fluorescence quenchers were simultaneously used for the assay. The hybridization probes specific for the VARV sequence contained FAM/BHQ1 as a dye/quencher pair; MPXV-specific, JOE/BHQ1; VZV-specific, TAMRA/BHQ2; and internal control-specific, Cy5/BHQ3.
View Article and Find Full Text PDFAn unusually high production of cytokines or chemokines as well as increased complement activation can drive development of chronic inflammatory autoimmune diseases. State-of-the-art biological therapies, recombinant receptors, or specific antibodies that target immune and inflammatory mediators are now effectively used. However, these newer drugs are not equally effective for all patients and can cause adverse effects, making the search for new immunomodulatory proteins of great importance.
View Article and Find Full Text PDFThe species cowpox virus (CPXV), genus Orthopoxvirus (OPV), consists of isolates highly variable in their biological properties and their genotypes. A TaqMan PCR assay for the specific detection of CPXV DNA based on sequences of the ORF D11L has been developed recently. (Gavrilova et al.
View Article and Find Full Text PDFVARV-CrmB is a TNF binding protein of variola virus. VARV-CrmB protein was previously shown to be active as a TNF-antagonist in a number of in vivo and in vitro models. Here we investigated the epicutaneous effect of recombinant VARV-CrmB protein using an experimental model of muTNFinduced migration of skin leukocytes as well as colony forming activity of bone marrow cells (BMC).
View Article and Find Full Text PDFOn May 8, 1980, the World Health Assembly at its 33(rd) session solemnly declared that the world and all its peoples had won freedom from smallpox and recommended ceasing the vaccination of the population against smallpox. Currently, a larger part of the world population has no immunity not only against smallpox but also against other zoonotic orthopoxvirus infections. Recently, recorded outbreaks of orthopoxvirus diseases not only of domestic animals but also of humans have become more frequent.
View Article and Find Full Text PDFIn the course of evolution, viruses have developed various molecular mechanisms to evade the defense reactions of the host organism. When understanding the mechanisms used by viruses to overcome manifold defense systems of the animal organism, represented by molecular factors and cells of the immune system, we would not only comprehend better but also discover new patterns of organization and function of these most important reactions directed against infectious agents. Here, study of the orthopoxviruses pathogenic for humans, such as variola (smallpox), monkeypox, cowpox, and vaccinia viruses, may be most important.
View Article and Find Full Text PDFThe review summarizes the archive data on smallpox, history of ancient civilizations, and the most recent data on the genome organization of orthopoxviruses, their evolutionary relationships, and the time points of smallpox emergence. The performed analysis provides the grounds for the hypothesis that smallpox could have emerged several times as a result of evolutionary changes in the zoonotic ancestor virus and disappeared due to insufficient population size of ancient civilizations. Smallpox reemerged in the Indian subcontinent approximately 2500-3000 years before present, which resulted in endemization of this anthroponotic infection, which had been preserved until the smallpox eradication in the 20th century AD.
View Article and Find Full Text PDFA method of one-stage rapid identification of variola (VARV), monkeypox (MPXV), cowpox (CPXV), and vaccinia (VACV) viruses, pathogenic for humans, utilizing multiplex real-time TaqMan PCR (MuRT-PCR) assay was developed. Four pairs of oligonucleotide primers and four hybridization probes with various fluorescent dyes and the corresponding fluorescence quenchers were concurrently used for MuRT-PCR assay. The hybridization probe specific for the VARV sequence contained FAM/BHQ1 as a dye/quencher pair; MPXV-specific, TAMRA/BHQ2; CPXV-specific, JOE/BHQ1; VACV-specific, Cy5/BHQ3.
View Article and Find Full Text PDFBackground: Variola virus (VARV) the causative agent of smallpox, eradicated in 1980, have wide spectrum of immunomodulatory proteins to evade host immunity. Recently additional biological activity was discovered for VARV CrmB protein, known to bind and inhibit tumour necrosis factor (TNF) through its N-terminal domain homologous to cellular TNF receptors. Besides binding TNF, this protein was also shown to bind with high affinity several chemokines which recruit B- and T-lymphocytes and dendritic cells to sites of viral entry and replication.
View Article and Find Full Text PDFProtein modification by ubiquitin or ubiquitin-like polypeptides is important for the fate and functions of the majority of proteins in the eukaryotic cell and can be involved in regulation of various biological processes, including protein metabolism (degradation), protein transport to several cellular compartments, rearrangement of cytoskeleton, and transcription of cytoprotective genes. The accumulated experimental data suggest that the ankyrin-F-box-like and BTB-kelch-like proteins of orthopoxviruses, represented by the largest viral multigene families, interact with the cellular Cullin-1- and Cullin-3-containing ubiquitin-protein ligases, respectively. In addition, orthopoxviruses code for their own RING-domain-containing ubiquitin ligase.
View Article and Find Full Text PDFHuman hepatitis B virus (HBV) causes a communicable disease that spreads worldwide and has brought about considerable economic losses due to human mortality and morbidity. HBV fails to reproduce in both cell cultures and laboratory animals; however, it is known that excess virion surface protein named hepatitis B surface antigen (HBsAg) is produced during viral replication and circulates in the blood of carriers as noninfectious particles of 22-nm diameter. It had been shown that purified HBsAg particles induce an efficient systemic immune response after injection.
View Article and Find Full Text PDFBackground: The number of recorded human cowpox cases are recently increasing. The symptoms caused by cowpox virus (CPXV) in a number of human cases are close to the symptoms characteristic of the orthopoxviral human infections caused by monkeypox or smallpox (variola) viruses. Any rapid and reliable real-time PCR method for distinguishing cowpox from smallpox and monkeypox is yet absent.
View Article and Find Full Text PDFUnlike vertebrates, for which paleontological data are available, and RNA viruses, which display a high rate of genetic variation, an objective estimate of time parameters for the molecular evolution of DNA viruses, which display a low rate of accumulation of mutations, is a complex problem. Genomic studies of a set of smallpox (variola) virus (VARV) isolates demonstrated the patterns of phylogenetic relationships between geographic variants of this virus. Using archival data on smallpox outbreaks and the results of phylogenetic analyses of poxvirus genomes, different research teams have obtained contradictory data on the possible time point of VARV origin.
View Article and Find Full Text PDFTumor necrosis factor (TNF), a potent proinflammatory and antiviral cytokine, is a critical extracellular immune regulator targeted by poxviruses through the activity of virus-encoded family of TNF-binding proteins (CrmB, CrmC, CrmD, and CrmE). The only TNF-binding protein from variola virus (VARV), the causative agent of smallpox, infecting exclusively humans, is CrmB. Here we have aligned the amino acid sequences of CrmB proteins from 10 VARV, 14 cowpox virus (CPXV), and 22 monkeypox virus (MPXV) strains.
View Article and Find Full Text PDFA microarray method was developed for simultaneous detection and identification of six species of Orthopoxvirus (OPV) including Variola, Monkeypox, Cowpox, Camelpox, Vaccinia, and Ectromelia viruses. The method allowed us to discriminate OPV species from varicella-zoster virus (VZV), Herpes Simplex 1 virus (HSV-1), and Herpes Simplex 2 virus (HSV-2) that cause infections with clinical manifestations similar to OPV infections. The nucleotide sequences of the C23L/B29R and the B19R genes identified for 86 and 72 different OPV strains, respectively, were used to design species-specific microarray oligonucleotide probes (oligoprobes).
View Article and Find Full Text PDF