The ability to silence the expression of gene products in a chemically, spatially, and temporally specific manner in the brains of animals has enabled key breakthroughs in the field of behavioral neuroscience. Using this technique, estrogen receptor alpha (ERα) has been specifically implicated in a multitude of behaviors in mice, including sexual, aggressive, locomotor, and maternal behaviors, in a variety of brain regions, including the medial preoptic area, ventromedial hypothalamus, and amygdala. In this chapter, we describe the techniques involved in the generation of the small hairpin RNAs (shRNAs) specifically designed to silence ERα, the construction of the adeno-associated viral (AAV) vector for delivery of the shRNA, the procedures to confirm the silencing of ERα (in vitro and in vivo) and in vivo delivery of the shRNAs to the brains of animals.
View Article and Find Full Text PDFEstrogens receptors (ER) are involved in several sociosexual behaviors and fear responses. In particular, the ERα is important for sexual behaviors, whereas ERβ modulates anxiolytic responses. Using shRNA directed either against the ERα or the ERβ RNAs (or containing luciferase control) encoded within an adeno-associated viral vector, we silenced these receptors in the ventromedial nucleus of the hypothalamus (VMN) and the central amygdala (CeA).
View Article and Find Full Text PDFThe central part of the medial preoptic nucleus (MPNc) is associated with sexual arousal induction in male rats. However, it is largely unclear how males are sexually aroused and achieve their first copulation. We previously reported that more MPNc neurons activate during the first copulation than the second copulation.
View Article and Find Full Text PDF17β-Estradiol (E) regulates the expression of female sexual behavior by acting through estrogen receptor (ER) α and β. Previously, we have shown that ERβ knockout female mice maintain high level of lordosis expression on the day after behavioral estrus when wild-type mice show a clear decline of the behavior, suggesting ERβ may be involved in inhibitory regulation of lordosis. However, it is not identified yet in which brain region(s) ERβ may mediate an inhibitory action of E.
View Article and Find Full Text PDFThis study tested the hypothesis that site-specific estrogen receptor alpha (ERα) expression is a critical factor in the expression of male prosocial behavior and aggression. Previous studies have shown that in the socially monogamous prairie vole (Microtus ochrogaster) low levels of ERα expression, in the medial amygdala (MeA), play an essential role in the expression of high levels of male prosocial behavior and that increasing ERα expression reduced male prosocial behavior. We used an shRNA adeno-associated viral vector to knock down/inhibit ERα in the MeA of the polygynous male meadow vole (M.
View Article and Find Full Text PDFTestosterone plays a central role in the facilitation of male-type social behaviors, such as sexual and aggressive behaviors, and the development of their neural bases in male mice. The action of testosterone via estrogen receptor (ER) α, after being aromatized to estradiol, has been suggested to be crucial for the full expression of these behaviors. We previously reported that silencing of ERα in adult male mice with the use of a virally mediated RNAi method in the medial preoptic area (MPOA) greatly reduced sexual behaviors without affecting aggressive behaviors whereas that in the medial amygdala (MeA) had no effect on either behavior.
View Article and Find Full Text PDFTestosterone, after being converted to estradiol in the brain, acts on estrogen receptors (ERα and ERβ) and controls the expression of male-type social behavior. Previous studies in male mice have revealed that ERα expressed in the medial preoptic area (MPOA) and medial amygdala (MeA) are differently involved in the regulation of sexual and aggressive behaviors by testosterone action at the time of testing in adult and/or on brain masculinization process during pubertal period. However, a role played by ERβ in these brain regions still remains unclear.
View Article and Find Full Text PDFThe ability to silence the expression of gene products in a chemically, spatially, and temporally specific manner in the brains of animals has enabled key breakthroughs in the field of behavioral neuroscience. Using this technique, estrogen receptor alpha (ERα) has been specifically implicated in a multitude of behaviors in mice, including sexual, aggressive, locomotor, and maternal behaviors. ERα has been identified in a variety of brain regions, including the medial preoptic area, ventromedial hypothalamus, and amygdala.
View Article and Find Full Text PDFPhosphatase and Tensin homolog deleted on chromosome 10 (PTEN) is a dual lipid-protein phosphatase known primarily as a growth preventing tumor suppressor. PTEN is also expressed in neurons, and pathways modulated by PTEN can influence neuronal function. Here we report a novel function of PTEN as a regulator of striatal dopamine signaling in a model of Parkinson's disease (PD).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2014
Recurrent axon collaterals are a major means of communication between spiny projection neurons (SPNs) in the striatum and profoundly affect the function of the basal ganglia. However, little is known about the molecular and cellular mechanisms that underlie this communication. We show that intrastriatal nitric oxide (NO) signaling elevates the expression of the vesicular GABA transporter (VGAT) within recurrent collaterals of SPNs.
View Article and Find Full Text PDFOestrogen receptor (ER)α plays important roles in the development and function of various neuronal systems through activation by its ligands, oestrogens. To visualise ERα-positive neurons, we generated transgenic (tg) mice expressing green fluorescent protein (GFP) under the control of the ERα promoter. In three independent tg lines, GFP-positive neurons were observed in areas previously reported to express ERα mRNA, including the lateral septum, bed nucleus of the stria terminalis, medial preoptic nucleus (MPO), hypothalamus, and amygdala.
View Article and Find Full Text PDFTestosterone is known to play an important role in the regulation of male-type sexual and aggressive behavior. As an aromatised metabolite of testosterone, estradiol-induced activation of estrogen receptor α (ERα) may be crucial for the induction of these behaviors in male mice. However, the importance of ERα expressed in different nuclei for this facilitatory action of testosterone has not been determined.
View Article and Find Full Text PDFThe medial preoptic area has been shown to be intricately involved in many behaviors, including locomotion, sexual behavior, maternal care, and aggression. The gene encoding estrogen receptor-α (ERα) protein is expressed in preoptic area neurons, and a very dense immunoreactive field of ERα is found in the preoptic region. ERα knockout animals show deficits in maternal care and sexual behavior and fail to exhibit increases in these behaviors in response to systemic estradiol treatment.
View Article and Find Full Text PDFOvariectomized females were given an infusion in the medial preoptic area (MPOA) of a viral vector carrying either a shRNA directed against the estrogen receptor α (ERα) or luciferase. The females were subjected to a test for sexual incentive motivation immediately followed by a test for receptivity and proceptive behaviors. Two weeks later they were tested in the light/dark choice procedure, and after another 2 weeks they were subjected to a test in a brightly lit open field.
View Article and Find Full Text PDFTo discover hypothalamic genes that might play a role in regulating energy balance, we carried out a microarray screen for genes induced by a 48-h fast in male C57Bl/6J mouse hypothalamus. One such gene was Fkbp51 (FK506 binding protein 5; Locus NP_034350). The product of this gene is of interest because it blocks glucocorticoid action, suggesting that fasting-induced elevation of this gene in the hypothalamus may reduce glucocorticoid negative feedback, leading to elevated glucocorticoid levels, thus promoting obese phenotypes.
View Article and Find Full Text PDFThe advent of viral gene therapy technology has contributed greatly to the study of a variety of medical conditions, and there is increasing promise for clinical translation of gene therapy into human treatments. Adeno-associated viral (AAV) vectors provide one of the more promising approaches to gene delivery, and have been used extensively over the last 20 years. Derived from nonpathogenic parvoviruses, these vectors allow for stable and robust expression of desired transgenes in vitro and in vivo.
View Article and Find Full Text PDFThe etiology of major depression remains unknown, but dysfunction of serotonergic signaling has long been implicated in the pathophysiology of this disorder. p11 is an S100 family member recently identified as a serotonin 1B [5-hydroxytryptamine 1B (5-HT(1B))] and serotonin 4 (5-HT(4)) receptor-binding protein. Mutant mice in which p11 is deleted show depression-like behaviors, suggesting that p11 may be a mediator of affective disorder pathophysiology.
View Article and Find Full Text PDFSocial recognition manifests itself in decreased investigation of a previously encountered individual. Estrogen receptor alpha (ERalpha) knock out mice show deficient social recognition and anxiety. These data show that the ERalpha is involved in these effects, but they do not say anything about the brain sites important for these effects.
View Article and Find Full Text PDFEstrogen receptor alpha (ERalpha) typically masculinizes male behavior, while low levels of ERalpha in the medial amygdala (MeA) and the bed nucleus of the stria terminalis (BST) are associated with high levels of male prosocial behavior. In the males of the highly social prairie vole (Microtus ochrogaster), increasing ERalpha in the MeA inhibited the expression of spontaneous alloparental behavior and produced a preference for novel females. To test for the effects of increased ERalpha in the BST, a viral vector was used to enhance ERalpha expression in the BST of adult male prairie voles.
View Article and Find Full Text PDFThe display of copulatory behaviors usually requires the presence of a mate and is, therefore, preceded by a search for and approach to a potential partner. The intensity of approach behaviors is determined by a process labeled sexual incentive motivation. Although it is known that female sexual motivation depends on estrogens, their site of action within the brain is unknown.
View Article and Find Full Text PDFClassical estrogen receptor-signaling mechanisms involve estradiol binding to intracellular nuclear receptors [estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta)] to promote changes in protein expression. Estradiol can also exert effects within seconds to minutes, however, a timescale incongruent with genomic signaling. In the brain, estradiol rapidly potentiates stimulated dopamine release in the striatum of female rats and enhances spontaneous rotational behavior.
View Article and Find Full Text PDFStudies using estrogen receptor alpha (ERalpha) knock-out mice indicate that ERalpha masculinizes male behavior. Recent studies of ERalpha and male prosocial behavior have shown an inverse relationship between ERalpha expression in regions of the brain that regulate social behavior, including the medial amygdala (MeA), and the expression of male prosocial behavior. These studies have lead to the hypothesis that low levels of ERalpha are necessary to "permit" the expression of high levels of male prosocial behavior.
View Article and Find Full Text PDFEstrogen receptor alpha (ERalpha) plays a pivotal role in the regulation of food intake and energy expenditure by estrogens. Although it is well documented that a disruption of ERalpha signaling in ERalpha knockout (ERKO) mice leads to an obese phenotype, the sites of estrogen action and mechanisms underlying this phenomenon are still largely unknown. In the present study, we exploited RNA interference mediated by adeno-associated viral vectors to achieve focused silencing of ERalpha in the ventromedial nucleus of the hypothalamus, a key center of energy homeostasis.
View Article and Find Full Text PDFHypothesis: Gene therapy with an adeno-associated viral (AAV) vector encoding the X-linked inhibitor of apoptosis protein (XIAP) in an animal model of cisplatin-induced ototoxicity can elucidate apoptotic pathways in the inner ear.
Background: Cisplatin is limited clinically by ototoxicity associated with apoptosis in the inner ear. The relevant intracellular apoptotic pathways, however, are unknown.
Adrenomedullin is a vasoactive peptide that is upregulated in higher-grade gliomas and promotes tumor cell proliferation. Since reduced activity of the anti-oncogene PTEN seems to also correlate with higher tumor grade, this suggests an inverse association between PTEN activity and adrenomedullin expression. PC12 pheochromocytoma and human U251 glioma cell lines were stably transfected with human PTEN or control plasmid.
View Article and Find Full Text PDF