Publications by authors named "Sergei M Danilov"

Article Synopsis
  • Recent analysis identified over 400 damaging missense ACE mutations, suggesting that carriers of heterozygous loss-of-function ACE mutations may be at risk for late-onset Alzheimer's disease (AD).
  • A study measuring blood ACE levels in 41 subjects with different heterozygous mutations revealed that certain mutations (Y215C and G325R) significantly reduced ACE levels, while the R1250Q mutation did not impact ACE levels.
  • The findings indicate that measuring blood ACE levels in patients with ACE mutations could help identify those at increased risk for AD, potentially guiding future preventive treatments involving chaperones and proteasome inhibitors to improve ACE function.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers hypothesized that individuals with damaging mutations of the Angiotensin-I-Converting Enzyme (ACE) and low ACE levels may be at risk for late-onset Alzheimer’s disease (AD).
  • The study analyzed blood ACE levels in 15 patients with various mutations and confirmed that a common mutation (Y215C) is linked to reduced ACE levels and AD risk.
  • Additional mutations were identified that also correlated with decreased ACE levels, suggesting potential risk factors for AD; the research indicates that identifying these mutations may help target individuals who could benefit from specific therapeutic treatments.
View Article and Find Full Text PDF

Angiotensin-converting enzyme (ACE) metabolizes a number of important peptides participating in blood pressure regulation and vascular remodeling. Elevated ACE expression in tissues (which is generally reflected by blood ACE levels) is associated with an increased risk of cardiovascular diseases. Elevated blood ACE is also a marker for granulomatous diseases.

View Article and Find Full Text PDF

We hypothesized that subjects with heterozygous loss-of-function (LoF) mutations are at risk for Alzheimer's disease because amyloid Aβ42, a primary component of the protein aggregates that accumulate in the brains of AD patients, is cleaved by ACE (angiotensin I-converting enzyme). Thus, decreased ACE activity in the brain, either due to genetic mutation or the effects of ACE inhibitors, could be a risk factor for AD. To explore this hypothesis in the current study, existing SNP databases were analyzed for LoF mutations using four predicting tools, including PolyPhen-2, and compared with the topology of known mutations already associated with AD.

View Article and Find Full Text PDF

Background: Angiotensin-converting enzyme (ACE) is highly expressed in renal proximal tubules, but ACE activity/levels in the urine are at least 100-fold lower than in the blood. Decreased proximal tubular ACE has been associated with renal tubular damage in both animal models and clinical studies. Because ACE is shed into urine primarily from proximal tubule epithelial cells, its urinary ACE measurement may be useful as an index of tubular damage.

View Article and Find Full Text PDF
Article Synopsis
  • - The angiotensin-converting enzyme (ACE) plays a key role in regulating blood pressure and is linked to various health conditions, particularly cardiovascular diseases and granulomatous diseases, with elevated levels indicating potential health risks.
  • - A new method called ACE phenotyping was used to investigate a specific donor's blood, revealing a unique conformational impairment in ACE, which is found in a small percentage of the healthy population and more frequently in patients with kidney issues.
  • - The study linked increased ACE activity and a specific M71V genetic mutation to elevated levels of a natural ACE inhibitor and proposed that monitoring ACE conformational changes could also reflect free bilirubin levels in plasma, which has clinical implications for patient health assessments.
View Article and Find Full Text PDF

Elevated ACE expression in tissues (reflected by blood ACE levels) is associated with increased risk of cardiovascular diseases and is also a marker for granulomatous diseases. We developed a new approach for characterization of ACE status in the blood-ACE phenotyping and established normal values of ACE levels 50-150% of control pooled plasma. ACE phenotyping was performed in citrated plasma of 120 patients with known interstitial lung diseases.

View Article and Find Full Text PDF

Background: Angiotensin-converting enzyme (ACE) metabolizes a number of important peptides participating in blood pressure regulation and vascular remodeling. Elevated ACE expression in tissues (which is generally reflected by ACE in blood) is associated with increased risk of cardiovascular diseases. Elevated ACE in blood is also a marker for granulomatous diseases.

View Article and Find Full Text PDF

Angiotensin I-converting enzyme (ACE, CD143) plays a crucial role in blood pressure regulation, vascular remodeling, and immunity. A wide spectrum of mAbs to different epitopes on the N and C domains of human ACE have been generated and used to study different aspects of ACE biology, including establishing a novel approach-conformational fingerprinting. Here we characterized a novel set of 14 mAbs, developed against human seminal fluid ACE.

View Article and Find Full Text PDF

An elevated blood angiotensin I-converting enzyme (ACE) supports diagnosis of sarcoidosis and Gaucher disease. However, some ACE mutations increase ACE shedding, and patients with these mutations are therefore at risk of being incorrectly diagnosed with sarcoidosis because of elevated serum ACE levels. We applied a novel approach called "ACE phenotyping" to identify possible ACE mutations in 3 pulmonary clinic patients that had suspected sarcoidosis based on elevated blood ACE levels.

View Article and Find Full Text PDF

Background: Pulmonary vascular endothelium is the main metabolic site for Angiotensin I-Converting Enzyme (ACE)-mediated degradation of several biologically-active peptides (angiotensin I, bradykinin, hemo-regulatory peptide Ac-SDKP). Primary lung cancer growth and lung cancer metastases decrease lung vascularity reflected by dramatic decreases in both lung and serum ACE activity. We performed precise ACE phenotyping in tissues from subjects with lung cancer.

View Article and Find Full Text PDF

Epithelial cells of prostate express significant level of ACE and, as a result, seminal fluid has 50-fold more ACE than plasma. The substitution of highly specialized prostate epithelial cells by tumor cells results in dramatic decrease in ACE production in prostate tissues. We performed detailed characterization of ACE status in prostate tissues from patients with benign prostate hyperplasia (BPH) and prostate cancer (PC) using new approach- ACE phenotyping, that includes evaluation of: 1) ACE activity with two substrates (HHL and ZPHL); 2) the ratio of the rates of their hydrolysis (ZPHL/HHL ratio); 3) the ratio of immunoreactive ACE protein to ACE activity; 4) the pattern of mAbs binding to different epitopes on ACE - ACE conformational fingerprint - to reveal conformational changes in prostate ACE due to prostate pathology.

View Article and Find Full Text PDF

Background: The pattern of binding of monoclonal antibodies (mAbs) to 18 epitopes on human angiotensin I-converting enzyme (ACE)-"conformational fingerprint of ACE"-is a sensitive marker of subtle conformational changes of ACE due to mutations, different glycosylation in various cells, the presence of ACE inhibitors and specific effectors, etc.

Methodology/principal Findings: We described in detail the methodology of the conformational fingerprinting of human blood and tissue ACEs that allows detecting differences in surface topography of ACE from different tissues, as well detecting inter-individual differences. Besides, we compared the sensitivity of the detection of ACE inhibitors in the patient's plasma using conformational fingerprinting of ACE (with only 2 mAbs to ACE, 1G12 and 9B9) and already accepted kinetic assay and demonstrated that the mAbs-based assay is an order of magnitude more sensitive.

View Article and Find Full Text PDF

Background: Gaucher disease is characterized by the activation of splenic and hepatic macrophages, accompanied by dramatically increased levels of angiotensin-converting enzyme (ACE). To evaluate the source of the elevated blood ACE, we performed complete ACE phenotyping using blood, spleen and liver samples from patients with Gaucher disease and controls.

Methods: ACE phenotyping included 1) immunohistochemical staining for ACE; 2) measuring ACE activity with two substrates (HHL and ZPHL); 3) calculating the ratio of the rates of substrate hydrolysis (ZPHL/HHL ratio); 4) assessing the conformational fingerprint of ACE by evaluating the pattern of binding of monoclonal antibodies to 16 different ACE epitopes.

View Article and Find Full Text PDF

Profound lung vascular permeability is a cardinal feature of acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI), two syndromes known to centrally involve the nonmuscle isoform of myosin light chain kinase (nmMLCK) in vascular barrier dysregulation. Two main splice variants, nmMLCK1 and nmMLCK2, are well represented in human lung endothelial cells and encoded by MYLK, and they differ only in the presence of exon 11 in nmMLCK1, which contains critical phosphorylation sites (Y and Y) that influence nmMLCK enzymatic activity, cellular translocation, and localization in response to vascular agonists. We recently demonstrated the functional role of SNPs in altering MYLK splicing, and in the present study we sought to identify the role of splicing factors in the generation of nmMLCK1 and nmMLCK2 spliced variants.

View Article and Find Full Text PDF

Aims: Angiotensin-converting enzyme (ACE), which metabolizes many peptides and plays a key role in blood pressure regulation and vascular remodeling, is expressed as a type-1 membrane glycoprotein on the surface of different cells, including endothelial cells of the heart. We hypothesized that the local conformation and, therefore, the properties of heart ACE could differ from lung ACE due to different microenvironment in these organs.

Methods And Results: We performed ACE phenotyping (ACE levels, conformation and kinetic characteristics) in the human heart and compared it with that in the lung.

View Article and Find Full Text PDF

Background: Angiotensin-converting enzyme (ACE) inhibitors (ACEI) are widely used in the management of cardiovascular diseases but with significant interindividual variability in the patient's response.

Objectives: To investigate whether interindividual variability in the response to ACE inhibitors is explained by the "ACE phenotype"-for example, variability in plasma ACE concentration, activity, and conformation and/or the degree of ACE inhibition in each individual.

Methods: The ACE phenotype was determined in plasma of 14 patients with hypertension treated chronically for 4 weeks with 40 mg enalapril (E) or 20 mg E + 16 mg candesartan (EC) and in 20 patients with hypertension treated acutely with a single dose (20 mg) of E with or without pretreatment with hydrochlorothiazide.

View Article and Find Full Text PDF

Angiotensin I-converting enzyme (ACE) hydrolyzes numerous peptides and is a critical participant in blood pressure regulation and vascular remodeling. Elevated tissue ACE levels are associated with increased risk for cardiovascular and respiratory disorders. Blood ACE concentrations are determined by proteolytic cleavage of ACE from the endothelial cell surface, a process that remains incompletely understood.

View Article and Find Full Text PDF

The nonmuscle (nm) myosin light-chain kinase isoform (MLCK), encoded by the MYLK gene, is a vital participant in regulating vascular barrier responses to mechanical and inflammatory stimuli. We determined that MYLK is alternatively spliced, yielding functionally distinct nmMLCK splice variants including nmMLCK2, a splice variant highly expressed in vascular endothelial cells (EC) and associated with reduced EC barrier integrity. We demonstrated previously that the nmMLCK2 variant lacks exon 11, which encodes a key regulatory region containing two differentially phosphorylated tyrosine residues (Y and Y) that influence vascular barrier function during inflammation.

View Article and Find Full Text PDF

Background: Angiotensin-converting enzyme (ACE), which metabolizes many peptides and plays a key role in blood pressure regulation and vascular remodeling, as well as in reproductive functions, is expressed as a type-1 membrane glycoprotein on the surface of endothelial and epithelial cells. ACE also presents as a soluble form in biological fluids, among which seminal fluid being the richest in ACE content - 50-fold more than that in blood.

Methods/principal Findings: We performed conformational fingerprinting of lung and seminal fluid ACEs using a set of monoclonal antibodies (mAbs) to 17 epitopes of human ACE and determined the effects of potential ACE-binding partners on mAbs binding to these two different ACEs.

View Article and Find Full Text PDF

Animal models have suggested a role of renin-angiotensin system (RAS) activation and subsequent cardiac oxidation in heart failure with preserved ejection fraction (HFpEF). Nevertheless, RAS blockade has failed to show efficacy in treatment of HFpEF. We evaluated the role of RAS activation and subsequent systemic oxidation in HFpEF.

View Article and Find Full Text PDF

Ventilator-induced inflammatory lung injury (VILI) is mechanistically linked to increased NAMPT transcription and circulating levels of nicotinamide phosphoribosyl-transferase (NAMPT/PBEF). Although VILI severity is attenuated by reduced NAMPT/PBEF bioavailability, the precise contribution of NAMPT/PBEF and excessive mechanical stress to VILI pathobiology is unknown. We now report that NAMPT/PBEF induces lung NFκB transcriptional activities and inflammatory injury via direct ligation of Toll-like receptor 4 (TLR4).

View Article and Find Full Text PDF

Background: Angiotensin I-converting enzyme (ACE) has two functional N- and C-domain active centers that display differences in the metabolism of biologically-active peptides including the hemoregulatory tetrapeptide, Ac-SDKP, hydrolysed preferentially by the N domain active center. Elevated Ac-SDKP concentrations are associated with reduced tissue fibrosis.

Results: We identified a patient of African descent exhibiting unusual blood ACE kinetics with reduced relative hydrolysis of two synthetic ACE substrates (ZPHL/HHL ratio) suggestive of the ACE N domain center inactivation.

View Article and Find Full Text PDF

Background: The pattern of binding of monoclonal antibodies (mAbs) to 16 epitopes on human angiotensin I-converting enzyme (ACE) comprise a conformational ACE fingerprint and is a sensitive marker of subtle protein conformational changes.

Hypothesis: Toxic substances in the blood of patients with uremia due to End Stage Renal Disease (ESRD) can induce local conformational changes in the ACE protein globule and alter the efficacy of ACE inhibitors.

Methodology/principal Findings: The recognition of ACE by 16 mAbs to the epitopes on the N and C domains of ACE was estimated using an immune-capture enzymatic plate precipitation assay.

View Article and Find Full Text PDF