Publications by authors named "Sergei M Antonov"

The open-channel block of -methyl-D-aspartate receptors (NMDARs) and their calcium-dependent desensitization (CDD) represent conventional mechanisms of glutamatergic synapse regulation. In neurotrauma, neurodegeneration, and neuropathic pain the clinical benefits of cure with memantine, ketamine, Mg, and some tricyclic antidepressants are often attributed to NMDAR open-channel block, while possible involvement of NMDAR CDD in the therapy is not well established. Here the effects of selective high-affinity sodium-calcium exchanger (NCX) isoform 1 inhibitor, SEA0400, on NMDA-activated whole-cell currents and their block by amitriptyline, desipramine and clomipramine recorded by patch-clamp technique in cortical neurons of primary culture were studied.

View Article and Find Full Text PDF

Na/K-ATPase maintains transmembrane ionic gradients and acts as a signal transducer when bound to endogenous cardiotonic steroids. At subnanomolar concentrations, ouabain induces neuroprotection against calcium overload and apoptosis of neurons during excitotoxic stress. Here, the role of lipid rafts in interactions between Na/K-ATPase, sodium-calcium exchanger (NCX), and N-methy-D-aspartate receptors (NMDARs) was investigated.

View Article and Find Full Text PDF

The facilitated activity of N-methyl-D-aspartate receptors (NMDARs) in the central and peripheral nervous systems promotes neuropathic pain. Amitriptyline (ATL) and desipramine (DES) are tricyclic antidepressants (TCAs) whose anti-NMDAR properties contribute to their analgetic effects. At therapeutic concentrations <1 µM, these medicines inhibit NMDARs by enhancing their calcium-dependent desensitization (CDD).

View Article and Find Full Text PDF

It is known that overexpression of -methyl-D-aspartate receptors (NMDARs) contributes to central sensitization and development of neuropathic pain. Tricyclic antidepressants (TCAs), amitriptyline (ATL), and desipramine (DES) exhibit analgetic anti-NMDAR activity and are commonly utilized for pain therapy. This property is determined by their ability to enhance the calcium-dependent desensitization (CDD) of NMDARs.

View Article and Find Full Text PDF

-methyl-D-aspartate receptors (NMDARs) are an essential target for the analgetic action of tricyclic antidepressants (TCAs). Their therapeutic blood concentrations achieve 0.5-1.

View Article and Find Full Text PDF

Homocysteine (HCY) molecule combines distinct pharmacological properties as an agonist of -methyl-d-aspartate receptors (NMDARs) and a reducing agent. Whereas NMDAR activation by HCY was elucidated, whether the redox modulation contributes to its action is unclear. Here, using patch-clamp recording and imaging of intracellular Ca, we study dithiothreitol (DTT) effects on currents and Ca responses activated by HCY through native NMDARs and recombinant diheteromeric GluN1/2A, GluN1/2B, and GluN1/2C receptors.

View Article and Find Full Text PDF

Pathological homocysteine (HCY) accumulation in the human plasma, known as hyperhomocysteinemia, exacerbates neurodegenerative diseases because, in the brain, this amino acid acts as a persistent -methyl-d-aspartate receptor agonist. We studied the effects of 0.1-1 nM ouabain on intracellular Ca signaling, mitochondrial inner membrane voltage (φ), and cell viability in primary cultures of rat cortical neurons in glutamate and HCY neurotoxic insults.

View Article and Find Full Text PDF

Although the tricyclic antidepressant amitriptyline (ATL) is widely used in the clinic, the mechanism underlying its high therapeutic efficacy against neuropathic pain remains unclear. NMDA receptors (NMDARs) represent a target for ATL and are involved in sensitization of neuropathic pain. Here we describe two actions of ATL on NMDARs: 1) enhancement of Ca-dependent desensitization and 2) trapping channel block.

View Article and Find Full Text PDF

N-methyl-d-aspartate receptor (NMDAR) is an essential target for ethanol action in the central nervous system (CNS). Whereas an alcohol addiction treatment represents a severe medical problem, many aspects of ethanol action at physiologically relevant concentrations on NMDARs are still unclear. Here using the whole-cell patch-clamp recording on cortical neurons in the primary culture, we studied inhibition of NMDAR currents by different ethanol concentrations ([Et]s) and its dependence on extracellular Ca.

View Article and Find Full Text PDF

Homocysteine (HCY) induced neurotoxicity largely depends on interaction of this endogenous amino acid with glutamate NMDA receptors (NMDARs). This receptor type is composed by GluN1 and different GluN2 (A, B, C or D) subunits. However, the receptor activity of HCY in brain regions which differ in relative contribution of GluN2 subunits was not tested so far.

View Article and Find Full Text PDF

Background: The plasma membrane Na/Ca-exchanger (NCX) has recently been shown to regulate Ca-dependent N-methyl-D-aspartate receptor (NMDAR) desensitization, suggesting a tight interaction of NCXs and NMDARs in lipid nanoclasters or "rafts". To evaluate possible role of this interaction we studied effects of Li on NMDA-elicited whole-cell currents and Ca responses of rat cortical neurons in vitro before and after cholesterol extraction by methyl-β-cyclodextrin (MβCD).

Results: Substitution Li for Na in the external solution caused a concentration-dependent decrease of steady-state NMDAR currents from 440 ± 71 pA to 111 ± 29 pA in 140 mM Na and 140 mM Li, respectively.

View Article and Find Full Text PDF

Transient expression of different NMDA receptors (NMDARs) plays a role in development of the cerebellum. Whether similar processes undergo during neuronal differentiation in culture is not clearly understood. We studied NMDARs in cerebellar neurons in cultures of 7 and 21 days in vitro (DIV) using immunocytochemical and electrophysiological approaches.

View Article and Find Full Text PDF

Genetic variants of the glutamate activated N-methyl-D-aspartate (NMDA) receptor (NMDAR) subunit GluN2A are associated with the hyperexcitable states manifested by epileptic seizures and interictal discharges in patients with disorders of the epilepsy-aphasia spectrum (EAS). The variants found in sporadic cases and families are of different types and include microdeletions encompassing the corresponding gene as well as nonsense, splice-site and missense defects. They are located at different functional domains of GluN2A and no clear genotype-phenotype correlation has emerged yet.

View Article and Find Full Text PDF

Intracellular calcium ([Ca]) has been reported to play an important role in autophagy, apoptosis and necrosis, however, a little is known about its impact in senescence. Here we investigated [Ca] contribution to oxidative stress-induced senescence of human endometrium-derived stem cells (hMESCs). In hMESCs sublethal HO-treatment resulted in a rapid calcium release from intracellular stores mediated by the activation of PLC/IP3/IP3R pathway.

View Article and Find Full Text PDF

Background Blocking the pro-nociceptive action of CGRP is one of the most promising approaches for migraine prophylaxis. The aim of this study was to explore a role for CGRP as a neuroprotective agent for central and peripheral neurons. Methods The viability of isolated rat trigeminal, cortical and cerebellar neurons was tested by fluorescence vital assay.

View Article and Find Full Text PDF

Homocysteine (HCY) is an endogenous redox active amino acid, best known as contributor to various neurodegenerative disorders. Although it is known that HCY can activate NMDA receptors (NMDARs), the mechanisms of its action on receptors composed of different NMDA receptor subunits remains almost unknown. In this study, using imaging and patch clamp technique in cultured cortical neurons and heterologous expression in HEK293T cells we tested the agonist activity of HCY on NMDARs composed of GluN1 and GluN2A subunits (GluN1/2A receptors) and GluN1 and GluN2B subunits (GluN1/2B receptors).

View Article and Find Full Text PDF

To evaluate the possible role of the plasma membrane Na(+)/Ca(2+)-exchanger (NCX) in regulation of N-methyl-d-aspartate (NMDA) receptors (NMDARs), we studied effects of 2-[2-[4-(4-nitrobenzyloxy) phenyl]ethyl]isothiourea methanesulfonate (KB-R7943; KBR) and lithium (inhibitors of NCX) on NMDA-elicited whole-cell currents using the patch-clamp technique on rat cortical neurons and human embryonic kidney 293T cells expressing recombinant NMDARs. KBR inhibited NMDAR currents in a voltage-independent manner with similar potency for receptors of GluN1/2A and GluN1/2B subunit compositions that excludes open-channel block and GluN2B-selective inhibition. The inhibition by KBR depended on glycine (Gly) concentration.

View Article and Find Full Text PDF

Recent studies suggested contribution of homocysteine (HCY) to neurodegenerative disorders and migraine. However, HCY effect in the nociceptive system is essentially unknown. To explore the mechanism of HCY action, we studied short- and long-term effects of this amino acid on rat peripheral and central neurons.

View Article and Find Full Text PDF

Whereas kainate (KA)-induced neurodegeneration has been intensively investigated, the contribution of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in neuronal Ca2+ overload ([Ca2+]i) is still controversial. Using Ca2+ imaging and patch-clamp techniques, we found different types of Ca2+ entry in cultured rat cortical neurons. The presence of Ca2+ in the extracellular solution was required to generate the [Ca2+]i responses to 30 μM N-methyl-d-aspartate (NMDA) or KA.

View Article and Find Full Text PDF

Using a fluorescent viability assay, immunocytochemistry, patch-clamp recordings, and Ca(2+) imaging analysis, we report that ouabain, a specific ligand of the Na(+),K(+)-ATPase cardiac glycoside binding site, can prevent glutamate receptor agonist-induced apoptosis in cultured rat cortical neurons. In our model of excitotoxicity, a 240-min exposure to 30 μM N-methyl-d-aspartate (NMDA) or kainate caused apoptosis in ∼50% of neurons. These effects were accompanied by a significant decrease in the number of neurons that were immunopositive for the antiapoptotic peptide Bcl-2.

View Article and Find Full Text PDF

Although Kir4.1 channels are the major inwardly rectifying channels in glial cells and are widely accepted to support K+- and glutamate-uptake in the nervous system, the properties of Kir4.1 channels during vital changes of K+ and polyamines remain poorly understood.

View Article and Find Full Text PDF

An automated fluorescence method for the detection of neuronal cell death by necrosis and apoptosis with sequential acridine orange (AO) and ethidium bromide (EB) staining using confocal microscopy is described. Since cell nuclei during apoptosis become acidic, AO staining was utilized to distinguish live neurons from neurons undergoing apoptosis, using the AO property to shift its fluorescence from green at normal pH toward brilliant orange-red in the process of acidification. Further EB application labels nuclei of necrotic neurons in red.

View Article and Find Full Text PDF

Whole-cell N-methyl-D-aspartate (NMDA)-activated currents were recorded from cultured rat cortical neurons. We report here a powerful effect of changing permeant ion concentrations on the voltage-dependent inhibition by external Mg(2+) (Mg(2+)(o)) of these currents. Internal Cs(+) (Cs(+)(i)) affected Mg(2+)(o) inhibition of the NMDA-activated currents in a voltage-dependent manner.

View Article and Find Full Text PDF