Publications by authors named "Sergei Kurkin"

Unlabelled: The architectonic subdivisions of the brain are believed to be functional modules, each processing parts of global functions. Previously, we showed that neurons in different regions operate in different firing regimes in monkeys. It is possible that firing regimes reflect differences in underlying information processing, and consequently the firing regimes in homologous regions across animal species might be similar.

View Article and Find Full Text PDF

The cerebellar dorsal vermis lobules VI-VII (oculomotor vermis) and its output region (caudal fastigial nuclei, cFN) are involved in tracking eye movements consisting of both smooth-pursuit and saccades, yet, the exact role of these regions in the control of tracking eye movements is still unclear. We compared the neuronal discharge of these cerebellar regions using a memory-based, smooth-pursuit task that distinguishes discharge related to movement preparation and execution from the discharge related to the processing of visual motion signals or their memory. Monkeys were required to pursue (i.

View Article and Find Full Text PDF

We examined recently neuronal substrates for predictive pursuit using a memory-based smooth pursuit task that distinguishes the discharge related to memory of visual motion-direction from that related to movement preparation. We found that the supplementary eye fields (SEF) contain separate signals coding memory and assessment of visual motion-direction, decision not-to-pursue, and preparation for pursuit. Since medial superior temporal area (MST) is essential for visual motion processing and projects to SEF, we examined whether MST carried similar signals.

View Article and Find Full Text PDF

Purpose: Juvenile monkeys being trained on smooth-pursuit tasks exhibit ocular oscillations resembling pendular nystagmus. The purpose of this study was to analyze these oscillations, the effects of gabapentin on them, and responses of cerebellar floccular neurons to understand possible neuronal mechanisms.

Methods: Four monkeys were trained for horizontal and vertical smooth pursuit; in two, saccades were also tested.

View Article and Find Full Text PDF

Recently, we examined the neuronal substrate of predictive pursuit during memory-based smooth pursuit and found that supplementary eye fields (SEFs) contain signals coding assessment and memory of visual motion direction, decision not-to-pursue ("no-go"), and preparation for pursuit. To determine whether these signals were unique to the SEF, we examined the discharge of 185 task-related neurons in the caudal frontal eye fields (FEFs) in 2 macaques. Visual motion memory and no-go signals were also present in the caudal FEF but compared with those in the SEF, the percentage of neurons coding these signals was significantly lower.

View Article and Find Full Text PDF

Recent studies have shown that rhesus macaques can perceive visual motion direction in earth-centered coordinates as accurately as humans. We tested whether coordinate frames representing smooth pursuit and/or visual motion signals in medial superior temporal area (MST) are earth centered to better understand its role in coordinating smooth pursuit. In 2 Japanese macaques, we compared preferred directions (re monkeys' head-trunk axis) of pursuit and/or visual motion responses of MSTd neurons while upright and during static whole-body roll-tilt.

View Article and Find Full Text PDF

The smooth pursuit system must interact with the vestibular system to maintain the accuracy of eye movements in space (i.e., gaze-movement) during head movement.

View Article and Find Full Text PDF

The smooth-pursuit system is important to precisely track a slowly moving object and maintain its image on the foveae during movement. During whole-body rotation, the smooth-pursuit system interacts with the vestibular system. The caudal part of the frontal eye fields (FEF) contains smooth pursuit-related neurons that signal eye velocity during pursuit.

View Article and Find Full Text PDF

It has been empirically established that the cerebral cortical areas defined by Brodmann one hundred years ago solely on the basis of cellular organization are closely correlated to their function, such as sensation, association, and motion. Cytoarchitectonically distinct cortical areas have different densities and types of neurons. Thus, signaling patterns may also vary among cytoarchitectonically unique cortical areas.

View Article and Find Full Text PDF

Cortical motor areas are thought to contribute "higher-order processing," but what that processing might include is unknown. Previous studies of the smooth pursuit-related discharge of supplementary eye field (SEF) neurons have not distinguished activity associated with the preparation for pursuit from discharge related to processing or memory of the target motion signals. Using a memory-based task designed to separate these components, we show that the SEF contains signals coding retinal image-slip-velocity, memory, and assessment of visual motion direction, the decision of whether to pursue, and the preparation for pursuit eye movements.

View Article and Find Full Text PDF

Previous studies in monkeys have shown that pursuit training during orthogonal whole body rotation results in task-dependent, predictive pursuit eye movements. We examined whether pursuit neurons in the frontal eye fields (FEF) are involved in predictive pursuit induced by vestibular-pursuit training. Two monkeys were rotated horizontally at 20 degrees/s for 0.

View Article and Find Full Text PDF

The smooth-pursuit system must interact with the vestibular system to maintain the accuracy of eye movements in space during head movement. Maintenance of a target image on the foveae is required not only during head rotation which activates primarily semi-circular canals but also during head translation which activates otolith organs. The caudal part of the frontal eye fields (FEF) contains pursuit neurons.

View Article and Find Full Text PDF

The smooth-pursuit system uses retinal image-slip-velocity information of target motion to match eye velocity to actual target velocity. The caudal part of the frontal eye fields (FEF) contains neurons whose activity is related to direction and velocity of smooth-pursuit eye movements (pursuit neurons), and these neurons are thought to issue a pursuit command. During normal pursuit in well-trained adult monkeys, a pursuit command is usually not differentiable from the actual eye velocity.

View Article and Find Full Text PDF

We examined simple-spike activity of Purkinje cells (P-cells) that responded during a search task which required both vergence- and frontal-pursuit. Of a total of 100 responding P-cells, 16% discharged only for frontal-pursuit, 43% only for vergence-pursuit, and 41% for both. Thus, the majority of vermal pursuit P-cells modulated their activity during vergence-pursuit.

View Article and Find Full Text PDF

Eye and head movements are coordinated during head-free pursuit. To examine whether pursuit neurons in frontal eye fields (FEF) carry gaze-pursuit commands that drive both eye-pursuit and head-pursuit, monkeys whose heads were free to rotate about a vertical axis were trained to pursue a juice feeder with their head and a target with their eyes. Initially the feeder and target moved synchronously with the same visual angle.

View Article and Find Full Text PDF

Frontal-eyed primates use both smooth pursuit in frontoparallel planes (frontal pursuit) and pursuit-in-depth (vergence pursuit) to track objects moving slowly in 3-dimensional (3D) space. To understand how 3D-pursuit signals represented in frontal eye fields are processed further by downstream pathways, monkeys were trained to pursue a spot moving in 3D virtual space. We characterized pursuit signals in Purkinje (P) cells in the cerebellar dorsal vermis and their discharge during vergence pursuit.

View Article and Find Full Text PDF

Young primates exhibit asymmetric eye movements during vertical smooth-pursuit across a textured background such that upward pursuit has low velocity and requires many catch-up saccades. The asymmetric eye movements cannot be explained by the un-suppressed optokinetic reflex resulting from background visual motion across the retina during pursuit, suggesting that the asymmetry reflects most probably, a low gain in upward eye commands (Kasahara et al. in Exp Brain Res 171:306-321, 2006).

View Article and Find Full Text PDF

The smooth-pursuit system and vestibular system interact to keep the retinal target image on the fovea during head and/or whole body movements. The caudal part of the frontal eye fields (FEF) in the fundus of arcuate sulcus contains pursuit neurons and the majority of them respond to vestibular stimulation induced by whole-body rotation, that activates primarily semi-circular canals, and by whole-body translation, that activates otoliths. To examine whether coordinate frames representing FEF pursuit signals are orbital or earth-vertical, we compared preferred directions during upright and static, whole-body roll-tilt in head- and trunk-restrained monkeys.

View Article and Find Full Text PDF

The smooth pursuit system and the vestibular system interact to keep the retinal target image on the fovea by matching the eye velocity in space to target velocity during head and/or whole body movement. The caudal part of the frontal eye fields (FEF) in the fundus of the arcuate sulcus contains pursuit-related neurons and the majority of them respond to vestibular stimulation induced by whole body movement. To understand the role of FEF pursuit neurons in the interaction of vestibular and pursuit signals, we examined the latency and time course of discharge modulation to horizontal whole body rotation during different vestibular task conditions in head-stabilized monkeys.

View Article and Find Full Text PDF

In order to see clearly when a target is moving slowly, primates with high acuity foveae use smooth-pursuit and vergence eye movements. The former rotates both eyes in the same direction to track target motion in frontal planes, while the latter rotates left and right eyes in opposite directions to track target motion in depth. Together, these two systems pursue targets precisely and maintain their images on the foveae of both eyes.

View Article and Find Full Text PDF

The smooth-pursuit system moves the eyes in space accurately to track slowly moving objects of interest despite visual inputs from the moving background and/or vestibular inputs during head movements. Recently, our laboratory has shown that young primates exhibit asymmetric eye movements during vertical pursuit across a textured background; upward eye velocity gain is reduced. To further understand the nature of this asymmetry, we performed three series of experiments in young monkeys.

View Article and Find Full Text PDF

The smooth-pursuit system interacts with the vestibular system to maintain the image of a moving target on the fovea. Efficient tracking performance requires information about the velocity and the initiation of target motion. Previous studies in monkeys have shown that training with orthogonal pursuit and whole body rotation results in adapted eye movement direction during chair rotation.

View Article and Find Full Text PDF

The caudal parts of the frontal eye fields (FEF) contain smooth-pursuit related neurons. Previous studies show that most FEF pursuit neurons carry visual signals in relation to frontal spot motion and discharge before the initiation of smooth-pursuit. It has also been demonstrated that most FEF pursuit neurons discharge during vergence tracking.

View Article and Find Full Text PDF

For accurate visual information about objects of interest moving slowly in three-dimensional (3D) space, primates with binocular fields use both frontal smooth-pursuit (frontal-pursuit) and vergence eye movements (i.e., depth pursuit) to maintain the images of the objects precisely on the foveae of left and right eyes.

View Article and Find Full Text PDF

For small objects moving smoothly in space close to the observer, smooth pursuit and vergence eye movements maintain target images near the foveae to insure high-resolution processing of visual signals about moving objects. Signals for both systems must be synthesized for pursuit-in-three-dimensions (3D). Recent studies have shown that responses of the majority of pursuit neurons in the frontal eye fields (FEF) code pursuit-in-3D.

View Article and Find Full Text PDF