Publications by authors named "Sergei Khlebnikov"

We report observations of quasiparticle pair production by a modulational instability in an atomic superfluid and present a measurement technique that enables direct characterization of quasiparticle quantum entanglement. By quenching the atomic interaction to attractive and then back to weakly repulsive, we produce correlated quasiparticles and monitor their evolution in a superfluid through evaluating the in situ density noise power spectrum, which essentially measures a "homodyne" interference between ground-state atoms and quasiparticles of opposite momenta. We observe large amplitude growth in the power spectrum and subsequent coherent oscillations in a wide spatial frequency band within our resolution limit, demonstrating coherent quasiparticle generation and evolution.

View Article and Find Full Text PDF

We consider decay of an initial density or current perturbation at finite temperature T near a quantum critical point with emergent Lorentz invariance. We argue that decay of perturbations with wave numbers k≫T (in natural units) is a good testing ground for holography-existence of a dual gravitational description-in experimentally accessible systems. The reason is that, computed holographically, the decay rate at large k depends only on the leading correction to the metric near the boundary, and that is quite universal.

View Article and Find Full Text PDF

Preferential orientation of the stripe phases in the quantum Hall (QH) regime has remained a puzzle since its discovery. We show experimentally and theoretically that the direction of high and low resistance of the two-dimensional (2D) hole gas in the QH regime can be controlled by an external strain. Depending on the sign of the in-plane shear strain, the Hartree-Fock energy of holes or electrons is minimized when the charge density wave (CDW) is oriented along the [110] or [110] directions.

View Article and Find Full Text PDF

To study the effect of disorder on quantum phase slips (QPSs) in superconducting wires, we consider the plasmon-only model where disorder can be incorporated into a first-principles instanton calculation. We consider weak but general finite-range disorder and compute the form factor in the QPS rate associated with momentum transfer. We find that the system maps onto dissipative quantum mechanics, with the dissipative coefficient controlled by the wave (plasmon) impedance Z of the wire and with a superconductor-insulator transition at Z = 6.

View Article and Find Full Text PDF