Folia Parasitol (Praha)
January 2020
We observed instances of cannibalism (intraspecific predation) among intra-instar larvae of Culex pipiens Linnaeus, 1758 while performing a bioassay of Lysinibacillus sphaericus (formerly named Bacillus sphaericus) larvicide, when the larvae were exposed to the larvicide for 48 h in the absence of food. Larvae without symptoms of poisoning attacked and devoured those visibly affected. Cannibalism was more prevalent in 1-2 instar larvae than in 3-4 instar.
View Article and Find Full Text PDFThe reasons for the apparent dominance of the toxic cyanobacterium Microcystis sp., reflected by its massive blooms in many fresh water bodies, are poorly understood. We show that in addition to a large array of secondary metabolites, some of which are toxic to eukaryotes, Microcystis sp.
View Article and Find Full Text PDFMicrocystis sp. are major players in the global intensification of toxic cyanobacterial blooms endangering the water quality of freshwater bodies. A novel green alga identified as Scenedesmus sp.
View Article and Find Full Text PDFWe investigated the genetic causes of ethanol tolerance by characterizing mutations selected in Saccharomyces cerevisiae W303-1A under the selective pressure of ethanol. W303-1A was subjected to three rounds of turbidostat, in a medium supplemented with increasing amounts of ethanol. By the end of selection, the growth rate of the culture has increased from 0.
View Article and Find Full Text PDFUnderstanding the genetic basis of the yeast ability to proliferate and ferment in the presence of restrictive concentrations of ethanol is of importance to both science and technology. In this study, we searched for genes that improve ethanol tolerance in ethanol-sensitive strains. To screen for suppressors of ethanol sensitivity, we introduced a 2µ-based genomic library, prepared from the ethanol-tolerant yeast S288C, into the ethanol-sensitive strain W303-1A.
View Article and Find Full Text PDFWe determine and compare the crystal structure of two proteases belonging to the subtilisin superfamily: S41, a cold-adapted serine protease produced by Antarctic bacilli, at 1.4 A resolution and Sph, a mesophilic serine protease produced by Bacillus sphaericus, at 0.8 A resolution.
View Article and Find Full Text PDFSteroidogenic acute regulatory protein (StAR) is a vital mitochondrial protein promoting transfer of cholesterol into steroid making mitochondria in specialized cells of the adrenal cortex and gonads. Our previous work has demonstrated that StAR is rapidly degraded upon import into the mitochondrial matrix. To identify the protease(s) responsible for this rapid turnover, murine StAR was expressed in wild-type Escherichia coli or in mutant strains lacking one of the four ATP-dependent proteolytic systems, three of which are conserved in mammalian mitochondria-ClpP, FtsH, and Lon.
View Article and Find Full Text PDFWe have previously isolated sphericase (Sph), an extracellular mesophilic serine protease produced by Bacillus sphaericus. The Sph amino acid sequence is highly homologous to two cold-adapted subtilisins from Antarctic bacilli S39 and S41 (76% and 74% identity, respectively). Sph is calcium-dependent, 310 amino acid residues long and has optimal activity at pH 10.
View Article and Find Full Text PDFAppl Environ Microbiol
July 2002
We have shown that urea-extracted cell wall of entomopathogenic Bacillus sphaericus 2297 and some other strains is a potent larvicide against Culex pipiens mosquitoes, with 50% lethal concentrations comparable to that of the well-known B. sphaericus binary toxin, with which it acts synergistically. The wall toxicity develops in B.
View Article and Find Full Text PDFConversion of fumaric acid (FA) to L-malic acid (LMA) was carried out in a bioreactor divided by two supported liquid membranes (SLMs) into three compartments: Feed, Reaction, and Product. The Feed/Reaction SLM, made of tri-n-octylphosphine oxide (vol 10%) in ethyl acetate, was selective toward the substrate, fumaric acid (S(FA/LMA) = 10). The Reaction/Product SLM, made of di(2-ethylhexyl) phosphate (vol 10%) in dichloromethane, was selective toward the product, L-malic acid (S(LMA/FA) = 680).
View Article and Find Full Text PDF