Huntington's disease (HD), a neurodegenerative disease, affects approximately 30,000 people in the United States, with 200,000 more at risk. Mitochondrial dysfunction caused by mutant huntingtin (mHTT) drives early HD pathophysiology. mHTT binds the translocase of mitochondrial inner membrane (TIM23) complex, inhibiting mitochondrial protein import and altering the mitochondrial proteome.
View Article and Find Full Text PDFIn healthy neurons, a mitochondrial membrane potential gradient exists whereby membrane potential is highest in the soma and decreases with distance from the nucleus. Correspondingly, distal mitochondria have more oxidative damage and slower protein import than somal mitochondria. Due to these differences, distal mitochondria have an intrinsic first stressor that somal mitochondria do not have, resulting in synaptic mitochondrial vulnerability.
View Article and Find Full Text PDFMutant huntingtin (mHTT), the causative protein in Huntington's disease (HD), associates with the translocase of mitochondrial inner membrane 23 (TIM23) complex, resulting in inhibition of synaptic mitochondrial protein import first detected in presymptomatic HD mice. The early timing of this event suggests that it is a relevant and direct pathophysiologic consequence of mHTT expression. We show that, of the 4 TIM23 complex proteins, mHTT specifically binds to the TIM23 subunit and that full-length wild-type huntingtin (wtHTT) and mHTT reside in the mitochondrial intermembrane space.
View Article and Find Full Text PDFNeuritic retraction in the absence of overt neuronal death is a shared feature of normal aging and neurodegenerative disorders, but the intracellular mechanisms modulating this process are not understood. We propose that cumulative distal mitochondrial protein damage results in impaired protein import, leading to mitochondrial dysfunction and focal activation of the canonical apoptosis pathway in neurites. This is a controlled process that may not lead to neuronal death and, thus, we term this phenomenon "neuritosis.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) are classically characterized as cell-surface receptors transmitting extracellular signals into cells. Here we show that central components of a GPCR signaling system comprised of the melatonin type 1 receptor (MT), its associated G protein, and β-arrestins are on and within neuronal mitochondria. We discovered that the ligand melatonin is exclusively synthesized in the mitochondrial matrix and released by the organelle activating the mitochondrial MT signal-transduction pathway inhibiting stress-mediated cytochrome release and caspase activation.
View Article and Find Full Text PDFModulation of miRNA expression has been shown to be beneficial in the context of multiple diseases. The purpose of this study was to determine if an inhibitor of miR-337-3p is neuroprotective for hypoxic injury after tail vein injection. We evaluated miR-337-3p expression levels and in brain tissue in vivo before and after permanent middle cerebral artery occlusion (pMCAO) in mice.
View Article and Find Full Text PDFOxygen evolution by photosystem II (PSII) involves activation by Cl ion, which is regulated by extrinsic subunits PsbQ and PsbP. In this study, the kinetics of chloride activation of oxygen evolution was studied in preparations of PSII depleted of the PsbQ and PsbP subunits (NaCl-washed and NaSO/pH 7.5-treated) over a pH range from 5.
View Article and Find Full Text PDFBackground: Functional and structural properties of mitochondria are highly tissue and cell dependent, but isolation of highly purified human neuronal mitochondria is not currently available.
New Method: We developed and validated a procedure to isolate purified neuronal mitochondria from brain tissue. The method combines Percoll gradient centrifugation to obtain synaptosomal fraction with nitrogen cavitation mediated synaptosome disruption and extraction of mitochondria using anti mitochondrial outer membrane protein antibodies conjugated to magnetic beads.
Background: Whether L-NAT, a cytochrome c release inhibitor and an antagonist of NK-1R, provides protection in ALS is not known.
Results: L-NAT delays disease onset and mortality in mSOD1(G93A) ALS mice by inhibiting mitochondrial cell death pathways, inflammation, and NK-1R downregulation.
Conclusion: L-NAT offers protection in a mouse model of ALS.
Significance: An ancient anionic phospholipid, cardiolipin (CL), ubiquitously present in prokaryotic and eukaryotic membranes, is essential for several structural and functional purposes.
Recent Advances: The emerging role of CLs in signaling has become the focus of many studies.
Critical Issues: In this work, we describe two major pathways through which mitochondrial CLs may fulfill the signaling functions via utilization of their (i) asymmetric distribution across membranes and translocations, leading to the surface externalization and (ii) ability to undergo oxidation reactions to yield the signature products recognizable by the executionary machinery of cells.
Mitochondrial dysfunction is associated with neuronal loss in Huntington's disease (HD), a neurodegenerative disease caused by an abnormal polyglutamine expansion in huntingtin (Htt). However, the mechanisms linking mutant Htt and mitochondrial dysfunction in HD remain unknown. We identify an interaction between mutant Htt and the TIM23 mitochondrial protein import complex.
View Article and Find Full Text PDFThe interaction of dietary fats and carbohydrates on liver mitochondria were examined in male FBNF1 rats fed 20 different low-fat isocaloric diets. Animal growth rates and mitochondrial respiratory parameters were essentially unaffected, but mass spectrometry-based mitochondrial lipidomics profiling revealed increased levels of cardiolipins (CLs), a family of phospholipids essential for mitochondrial structure and function, in rats fed saturated or trans fat-based diets with a high glycemic index. These mitochondria showed elevated monolysocardiolipins (a CL precursor/product of CL degradation), elevated ratio of trans-phosphocholine (PC) (18:1/18:1) to cis-PC (18:1/18:1) (a marker of thiyl radical stress), and decreased ubiquinone Q9; the latter two of which imply a low-grade mitochondrial redox abnormality.
View Article and Find Full Text PDFCaspase-mediated cell death contributes to the pathogenesis of motor neuron degeneration in the mutant SOD1(G93A) transgenic mouse model of amyotrophic lateral sclerosis (ALS), along with other factors such as inflammation and oxidative damage. By screening a drug library, we found that melatonin, a pineal hormone, inhibited cytochrome c release in purified mitochondria and prevented cell death in cultured neurons. In this study, we evaluated whether melatonin would slow disease progression in SOD1(G93A) mice.
View Article and Find Full Text PDFOmega-3 polyunsaturated fatty acids (n-3 PUFAs) block apoptotic neuronal cell death and are strongly neuroprotective in acute and chronic neurodegeneration. Theoretical considerations, indirect data, and consideration of parsimony lead to the hypothesis that modulation of mitochondrial pathway(s) underlies at least some of the neuroprotective effects of n-3 PUFAs. We therefore systematically tested this hypothesis on healthy male FBFN1 rats fed for four weeks with isocaloric, 10% fat-containing diets supplemented with 1, 3, or 10% fish oil (FO).
View Article and Find Full Text PDFIsolation of functional and intact mitochondria from solid tissue is crucial for studies that focus on the elucidation of normal mitochondrial physiology and/or mitochondrial dysfunction in conditions such as aging, diabetes, and cancer. There is growing recognition of the importance of mitochondria both as targets for drug development and as off-target mediators of drug side effects. Unfortunately, mitochondrial isolation from tissue is generally carried out using homogenizer-based methods that require extensive operator experience to obtain reproducible high-quality preparations.
View Article and Find Full Text PDFBackground: Dipyrone is an analgesic and antipyretic drug usually prescribed for patients with inflammatory conditions. We recently identified dipyrone as an antiapoptotic agent by screening a library of 1040 compounds for their ability to inhibit cytochrome c release from isolated mitochondria.
Objective: We investigated the potential neuroprotective properties of dipyrone in cerebral ischemia.
Isoketals (IsoKs) are gamma-ketoaldehydes formed via the isoprostane pathway of arachidonic acid peroxidation and are among the most reactive by-products of lipid peroxidation. IsoKs selectively adduct to protein lysine residues and are highly cytotoxic, but the targets and molecular events involved in IsoK-induced cell death are poorly defined. Our previous work established that physiologically relevant aldehydes induce mitochondrial dysfunction (Kristal et al.
View Article and Find Full Text PDFCytotoxicity associated with pathophysiological Ca(2+) overload (e.g. in stroke) appears mediated by an event termed the mitochondrial permeability transition (mPT).
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
March 2008
Perturbation of the catalytic inorganic core (Mn4Ca1OxCly) of the photosystem II-water-oxidizing complex (PSII-WOC) isolated from spinach is examined by substitution of Ca2+ with cadmium(II) during core assembly. Cd2+ inhibits the yield of reconstitution of O2-evolution activity, called photoactivation, starting from the free inorganic cofactors and the cofactor-depleted apo-WOC-PSII complex. Ca2+ affinity increases following photooxidation of the first Mn2+ to Mn3+ bound to the 'high-affinity' site.
View Article and Find Full Text PDFBiogenesis and repair of the inorganic core (Mn4CaO(x)Cl(y)), in the water-oxidizing complex of photosystem II (WOC-PSII), occurs through the light-induced (re)assembly of its free elementary ions and the apo-WOC-PSII protein, a reaction known as photoactivation. Herein, we use electron paramagnetic resonance (EPR) spectroscopy to characterize changes in the ligand coordination environment of the first photoactivation intermediate, the photo-oxidized Mn3+ bound to apo-WOC-PSII. On the basis of the observed changes in electron Zeeman (g(eff)), 55Mn hyperfine (A(Z)) interaction, and the EPR transition probabilities, the photogenerated Mn3+ is shown to exist in two pH-dependent forms, differing in terms of strength and symmetry of their ligand fields.
View Article and Find Full Text PDFOxygen evolution by photosystem II (PSII) is activated by chloride and other monovalent anions. In this study, the effects of iodide on oxygen evolution activity were investigated using PSII-enriched membrane fragments from spinach. In the absence of Cl(-), the dependence of oxygen evolution activity on I(-) concentration showed activation followed by inhibition in both intact PSII and NaCl-washed PSII, which lacked the PsbP and PsbQ subunits.
View Article and Find Full Text PDF