Biochemistry (Mosc)
August 2024
The proteogenomic search pipeline developed in this work has been applied for reanalysis of 40 publicly available shotgun proteomic datasets from various human tissues comprising more than 8000 individual LC-MS/MS runs, of which 5442 .raw data files were processed in total. This reanalysis was focused on searching for ADAR-mediated RNA editing events, their clustering across samples of different origins, and classification.
View Article and Find Full Text PDFIn this work, we proposed a biosensor for trypsin proteolytic activity assay using immobilization of model peptides on screen-printed electrodes (SPE) modified with gold nanoparticles (AuNPs) prepared by electrosynthetic method. Sensing of proteolytic activity was based on electrochemical oxidation of tyrosine residues of peptides. We designed peptides containing N-terminal cysteine residue for immobilization on an SPE, modified with gold nanoparticles, trypsin-specific cleavage site and tyrosine residue as a redox label.
View Article and Find Full Text PDFA meta-analysis of the results of targeted quantitative screening of human blood plasma was performed to generate a reference standard kit that can be used for health analytics. The panel included 53 of the 296 proteins that form a “stable” part of the proteome of a healthy individual; these proteins were found in at least 70% of samples and were characterized by an interindividual coefficient of variation <40%. The concentration range of the selected proteins was 10−10−10−3 M and enrichment analysis revealed their association with rare familial diseases.
View Article and Find Full Text PDFRNA editing by adenosine deaminases of the ADAR family can lead to protein recoding, since inosine formed from adenosine in mRNA is complementary to cytosine; the resulting codon editing might introduce amino acid substitutions into translated proteins. Proteome recoding can have functional consequences which have been described in many animals including humans. Using protein recoding database derived from publicly available transcriptome data, we identified for the first time the recoding sites in the zebrafish shotgun proteomes.
View Article and Find Full Text PDFInt J Mol Sci
May 2022
Cancer cell lines responded differentially to type I interferon treatment in models of oncolytic therapy using vesicular stomatitis virus (VSV). Two opposite cases were considered in this study, glioblastoma DBTRG-05MG and osteosarcoma HOS cell lines exhibiting resistance and sensitivity to VSV after the treatment, respectively. Type I interferon responses were compared for these cell lines by integrative analysis of the transcriptome, proteome, and RNA editome to identify molecular factors determining differential effects observed.
View Article and Find Full Text PDFAdenosine-to-inosine RNA editing is a system of post-transcriptional modification widely distributed in metazoans which is catalyzed by ADAR enzymes and occurs mostly in double-stranded RNA (dsRNA) before splicing. This type of RNA editing changes the genetic code, as inosine generally pairs with cytosine in contrast to adenosine, and this expectably modulates RNA splicing. We review the interconnections between RNA editing and splicing in the context of human cancer.
View Article and Find Full Text PDFMass spectrometry-based proteome analysis implies matching the mass spectra of proteolytic peptides to amino acid sequences predicted from genomic sequences. Reliability of peptide variant identification in proteogenomic studies is often lacking. We propose a way to interpret shotgun proteomics results, specifically in the data-dependent acquisition mode, as protein sequence coverage by multiple reads as it is done in nucleic acid sequencing for calling of single nucleotide variants.
View Article and Find Full Text PDFOncolytic viruses have gained momentum in the last decades as a promising tool for cancer treatment. Despite the progress, only a fraction of patients show a positive response to viral therapy. One of the key variable factors contributing to therapy outcomes is interferon-dependent antiviral mechanisms in tumor cells.
View Article and Find Full Text PDFSelection of a precursor ion from a peptide isotopic cluster to obtain a fragmentation mass spectrum is a crucial step in data-dependent proteome analysis. However, the monoisotopic mass assignment performed in this step is often an issue confronted by the data acquisition software of hybrid Orbitrap FTMS that is most widely used in proteomics. To address the problem, many data processing tools, such as raw data converters and search engines, have optional accounting for the precursor mass shift due to the isotopic error.
View Article and Find Full Text PDFIn order to optimize sample preparation for shotgun proteomics, we compared four cysteine alkylating agents: iodoacetamide, chloroacetamide, 4-vinylpyridine and methyl methanethiosulfonate, and estimated their effects on the results of proteome analysis. Because alkylation may result in methionine modification in vitro, proteomics data were searched for methionine to isothreonine conversions, which may mimic genomic methionine to threonine substitutions found in proteogenomic analyses. We found that chloroacetamide was superior to the other reagents in terms of the number of identified peptides and undesirable off-site reactions.
View Article and Find Full Text PDFIntroduction: Cancers may be treated by selective targeting of the genes vital for their survival. A number of attempts have led to discovery of several genes essential for surviving of tumor cells of different types. In this work, we tried to analyze genes that were previously predicted to be essential for melanoma surviving.
View Article and Find Full Text PDFAdenosine-to-inosine RNA editing is an enzymatic post-transcriptional modification which modulates immunity and neural transmission in multicellular organisms. In particular, it involves editing of mRNA codons with the resulting amino acid substitutions. We identified such sites for developmental proteomes of at the protein level using available data for 15 stages of fruit fly development from egg to imago and 14 time points of embryogenesis.
View Article and Find Full Text PDFProteogenomics is based on the use of customized genome or RNA sequencing databases for interrogation of shotgun proteomics data in search for proteome-level evidence of genome variations or RNA editing. In this work, the products of adenosine-to-inosine RNA editing in human and murine brain proteomes are identified using publicly available brain proteome LC-MS/MS datasets and an RNA editome database compiled from several sources. After filtering of false-positive results, 20 and 37 sites of editing in proteins belonging to 14 and 32 genes are identified for murine and human brain proteomes, respectively.
View Article and Find Full Text PDFIdentification of isomeric amino acid residues in peptides and proteins is challenging but often highly desired in proteomics. One of the practically important cases that require isomeric assignments is that associated with single-nucleotide polymorphism substitutions of Met residues by Thr in cancer-related proteins. These genetically encoded substitutions can yet be confused with the chemical modifications, arising from protein alkylation by iodoacetamide, which is commonly used in the standard procedure of sample preparation for proteomic analysis.
View Article and Find Full Text PDFAdenosine-to-inosine RNA editing is one of the most common types of RNA editing, a posttranscriptional modification made by special enzymes. We present a proteomic study on this phenomenon for Drosophila melanogaster. Three proteome data sets were used in the study: two taken from public repository and the third one obtained here.
View Article and Find Full Text PDFPeptide mass shifts were profiled using ultra-tolerant database search strategy for shotgun proteomics data sets of human glioblastoma cell lines demonstrating strong response to the type I interferon (IFNα-2b) treatment. The main objective of this profiling was revealing the cell response to IFN treatment at the level of protein modifications. To achieve this objective, statistically significant changes in peptide mass shift profiles between IFN treated and untreated glioblastoma samples were analyzed.
View Article and Find Full Text PDFRecent advances in mass spectrometry and separation technologies created the opportunities for deep proteome characterization using shotgun proteomics approaches. The "real world" sample complexity and high concentration range limit the sensitivity of this characterization. The common strategy for increasing the sensitivity is sample fractionation prior to analysis either at the protein or the peptide level.
View Article and Find Full Text PDFThe identification of genetically encoded variants at the proteome level is an important problem in cancer proteogenomics. The generation of customized protein databases from DNA or RNA sequencing data is a crucial stage of the identification workflow. Genomic data filtering applied at this stage may significantly modify variant search results, yet its effect is generally left out of the scope of proteogenomic studies.
View Article and Find Full Text PDFAn acquisition of increased sensitivity of cancer cells to viruses is a common outcome of malignant progression that justifies the development of oncolytic viruses as anticancer therapeutics. Studying molecular changes that underlie the sensitivity to viruses would help to identify cases where oncolytic virus therapy would be most effective. We quantified changes in protein abundances in two glioblastoma multiforme (GBM) cell lines that differ in the ability to induce resistance to vesicular stomatitis virus (VSV) infection in response to type I interferon (IFN) treatment.
View Article and Find Full Text PDFBrochosomes (BS) are secretory granules resembling buckyballs, produced intracellularly in specialized glandular segments of the Malpighian tubules and forming superhydrophobic coatings on the integuments of leafhoppers (Hemiptera, Cicadellidae). Their composition is poorly known. Using a combination of SDS-PAGE, LC-MS/MS, next-generation sequencing (RNAseq) and bioinformatics we demonstrate that the major structural component of BS of the leafhopper Graphocephala fennahi Young is a novel family of 21-40-kDa secretory proteins, referred to herein as brochosomins (BSM), apparently cross-linked by disulfide bonds.
View Article and Find Full Text PDFIn a proteogenomic approach based on tandem mass spectrometry analysis of proteolytic peptide mixtures, customized exome or RNA-seq databases are employed for identifying protein sequence variants. However, the problem of variant peptide identification without personalized genomic data is important for a variety of applications. Following the recent proposal by Chick et al.
View Article and Find Full Text PDFProteogenomic studies aiming at identification of variant peptides using customized database searches of mass spectrometry data are facing a dilemma of selecting the most efficient database search strategy: A choice has to be made between using combined or sequential searches against reference (wild-type) and mutant protein databases or directly against the mutant database without the wild-type one. Here we called these approaches "all-together", "one-by-one", and "direct", respectively. We share the results of the comparison of these search strategies obtained for large data sets of publicly available proteogenomic data.
View Article and Find Full Text PDF