Publications by authors named "Sergei A Chizhik"

Stimuli-responsive membranes play an important role in the fields of biomedicine, food and chemical industries, and environmental applications, including separation of water-oil emulsions. In this study, we present a method to fabricate pH-sensitive membranes using UV-initiated RAFT graft copolymerization of styrene (ST) and acrylic acid (AA) on poly(ethylene terephthalate) (PET) track-etched membranes (TeMs). The optimization of polymerization conditions led to successful grafting of polystyrene (PS) and poly(acrylic acid) (PAA) onto PET TeMs, resulting in membranes with stable hydrophobicity and pH change responsiveness.

View Article and Find Full Text PDF

In this work, the nanoindentations on bilayer composite nanofilms composed of metal Ag and polymer PMMA were simulated using molecular dynamics. The effects of the thickness of Ag and PMMA on the elastic moduli of the composite films were analyzed from Hertz contact theory, dislocation evolution and atomic migration. The results show that the maximum penetration depth that the Hertz model could well describe is about 6 Å, and this limiting value is almost independent on the film thickness.

View Article and Find Full Text PDF

In this work, we have developed a method for the preparation of pH-responsive track-etched membranes (TeMs) based on poly(ethylene terephthalate) (PET) with pore diameters of 2.0 ± 0.1 μm of cylindrical shape by RAFT block copolymerization of styrene (ST) and 4-vinylpyridine (4-VP) to be used in the separation of water-oil emulsions.

View Article and Find Full Text PDF

The paper describes the separation of an oil-water emulsion by filtration using poly(ethylene terephthalate) track-etched membranes (PET TeMs) with regular pore geometry and narrow pore size distribution. PET TeMs were modified with trichloro(octyl)silane to increase their hydrophobic properties. Conditions for the modification of PET TeMs with trichloro(octyl)silane were investigated.

View Article and Find Full Text PDF

Molecular dynamics simulations have been performed to study the influence of five different heating rates on the sintering of aluminum nanoparticles with a diameter of 4-10 nm, mainly by exploring the atomic migration, radial distribution function (RDF), atomic average displacement, mean square displacement (MSD), radius ratio (i.e., the ratio of the neck radius to the particle radius), shrinkage rate, radius of gyration, sintering temperature and melting point.

View Article and Find Full Text PDF