Publications by authors named "Serge Halazy"

We describe novel, cell-permeable, and bioavailable salicylic acid derivatives that are potent and selective inhibitors of GLEPP1/protein-tyrosine phosphatase . Two previously described GLEPP1 substrates, paxillin and Syk, are both required for cytoskeletal rearrangement and cellular motility of leukocytes in chemotaxis. We show here that GLEPP1 inhibitors prevent dephosphorylation of Syk1 and paxillin in resting cells and block primary human monocyte and mouse bone marrow-derived macrophage chemotaxis in a gradient of monocyte chemotactic protein-1.

View Article and Find Full Text PDF

Non-competitive N-methyl-d-aspartate (NMDA) blockers induce schizophrenic-like behavior in healthy volunteers and exacerbate symptomatology in schizophrenic patients. Hence, a compound able to enhance NMDA neurotransmission by increasing levels of d-serine, an endogenous full agonist at the glycine site of the NMDA receptors, could have anti-psychotic activity. One way to increase d-serine levels is the inhibition of d-amino acid oxidase (DAAO), the enzyme responsible for d-serine oxidation.

View Article and Find Full Text PDF

We report a novel chemical class of potent oxytocin receptor antagonists showing a high degree of selectivity against the closely related vasopressin receptors (V1a, V1b, V2). An initial compound, 7, was shown to be active in an animal model of preterm labor when administered by the intravenous but not by the oral route. Stepwise SAR investigations around the different structural elements revealed one position, the arenesulfonyl moiety, to be amenable to structural changes.

View Article and Find Full Text PDF

Several lines of evidence support the hypothesis that c-Jun N-terminal kinase (JNKs) plays a critical role in a wide range of diseases including cell death (apoptosis)-related disorders (neurodegenerative diseases, brain, heart, and renal ischemia, epilepsy) and inflammatory disorders (multiple sclerosis, rheumatoid arthritis, inflammatory bowel diseases). Screening of our internal compound collection for inhibitors of JNK3 led to the identification of (benzothiazol-2-yl)acetonitrile derivatives as potent and selective JNK1, -2, -3 inhibitors. Starting from initial hit 1 (AS007149), the chemistry and initial structure-activity relationship (SAR) of this novel and unique kinase inhibitor template were explored.

View Article and Find Full Text PDF

Several lines of evidence support the hypothesis that c-Jun N-terminal kinases (JNKs) play a critical role in a wide range of disease states including cell death (apoptosis)-related and inflammatory disorders (epilepsy, brain, heart and renal ischemia, neurodegenerative diseases, multiple sclerosis, rheumatoid arthritis, and inflammatory bowel syndrome). The screening of a compound collection led to the identification of a 2-(benzoylaminomethyl)thiophene sulfonamide (AS004509, compound I) as a potent and selective JNK inhibitor. Chemistry and structure--activity relationship (SAR) studies performed around this novel kinase-inhibiting motif indicated that the left and central parts of the molecule were instrumental to maintaining potency at the enzyme.

View Article and Find Full Text PDF

There is compelling evidence that Bax channel activity stimulates cytochrome c release leading ultimately to cell death, which is a key event in ischemic injuries and neurodegenerative diseases. Here 3,6-dibromocarbazole piperazine derivatives of 2-propanol are described as the first small and potent modulators of the cytochrome c release triggered by Bid-induced Bax activation in a mitochondrial assay. Furthermore, a mechanism of action is proposed, and fluorescent derivatives allowing the localization of such inhibitors are reported.

View Article and Find Full Text PDF