Publications by authors named "Serge Didenko Vasylechko"

We introduce a generative model for synthesis of large scale 3D datasets for quantitative parameter mapping of myelin water fraction (MWF). Our model combines a MR physics signal decay model with an accurate probabilistic multi-component parametric T2 model. We synthetically generate a wide variety of high quality signals and corresponding parameters from a wide range of naturally occurring prior parameter values.

View Article and Find Full Text PDF

Purpose: To assess the robustness and repeatability of intravoxel incoherent motion model (IVIM) parameter estimation for the diffusion-weighted MRI in the abdominal organs under the constraints of noisy diffusion signal using a novel neural network method.

Methods: Clinically acquired abdominal scans of Crohn's disease patients were retrospectively analyzed with regions segmented in the kidney cortex, spleen, liver, and bowel. A novel IVIM parameter fitting method based on the principle of a physics guided self-supervised convolutional neural network that does not require reference parameter estimates for training was compared to a conventional non-linear least squares (NNLS) algorithm, and a voxelwise trained artificial neural network (ANN).

View Article and Find Full Text PDF