(1) Background: Continuous growth in pharmaceutical expenditure indicates the need for more advanced pharmacoeconomics evaluations to optimize healthcare outcomes and resource allocation. This study assesses the extent to which accredited pharmacy colleges in the United States cover pharmacoeconomics content within the didactic curriculum of their Doctor of Pharmacy (PharmD) programs. (2) Methods: We conducted a systematic search of the websites of accredited professional-degree programs in pharmacy schools located in the United States to identify pertinent content related to pharmacoeconomics.
View Article and Find Full Text PDFMechanisms underlying ethanol (EtOH)-induced detrusor smooth muscle (DSM) relaxation and increased urinary bladder capacity remain unknown. We investigated whether the large conductance Ca(2+)-activated K(+) (BK) channels or L-type voltage-dependent Ca(2+) channels (VDCCs), major regulators of DSM excitability and contractility, are targets for EtOH by patch-clamp electrophysiology (conventional and perforated whole cell and excised patch single channel) and isometric tension recordings using guinea pig DSM cells and isolated tissue strips, respectively. EtOH at 0.
View Article and Find Full Text PDFVoltage-gated Kv7 (KCNQ) channels are emerging as essential regulators of smooth muscle excitability and contractility. However, their physiological role in detrusor smooth muscle (DSM) remains to be elucidated. Here, we explored the molecular expression and function of Kv7 channel subtypes in guinea pig DSM by RT-PCR, qRT-PCR, immunohistochemistry, electrophysiology, and isometric tension recordings.
View Article and Find Full Text PDFObjective: To investigate the mechanism by which BRL37344, a β3-adrenergic receptor (β3-ARs) agonist, facilitates the inhibition of nerve-evoked contractions in human detrusor smooth muscle (DSM) isolated strips and to identify the role of large-conductance Ca(2+)-activated K(+) (BK) channels in this process.
Methods: Human DSM specimens were obtained from open bladder surgeries on patients without preoperative history of overactive bladder symptoms. Isometric DSM tension recordings were conducted using force-displacement transducers and thermostatically controlled tissue baths.
Patients suffering from a variety of neurological diseases such as spinal cord injury, Parkinson's disease, and multiple sclerosis often develop neurogenic detrusor overactivity (NDO), which currently lacks a universally effective therapy. Here, we tested the hypothesis that NDO is associated with changes in detrusor smooth muscle (DSM) large conductance Ca(2+)-activated K(+) (BK) channel expression and function. DSM tissue samples from 33 patients were obtained during open bladder surgeries.
View Article and Find Full Text PDFThe large-conductance voltage- and Ca(2+)-activated K(+) (BK) channel is a major regulator of detrusor smooth muscle (DSM) contractility thus facilitating urinary bladder function. Recent findings suggest that activation of β3-adrenoceptors causes DSM relaxation. However, it is unknown whether the β3-adrenoceptor-mediated DSM relaxation is BK channel-dependent during nerve-evoked contractions.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
April 2013
The TRPM4 channel is a Ca(2+)-activated, monovalent cation-selective channel of the melastatin transient receptor potential (TRPM) family. The TRPM4 channel is implicated in the regulation of many cellular processes including the immune response, insulin secretion, and pressure-induced vasoconstriction of cerebral arteries. However, the expression and function of the TRPM4 channels in detrusor smooth muscle (DSM) have not yet been explored.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
August 2012
Animal studies suggest that the small (SK) and intermediate (IK) conductance Ca(2+)-activated K(+) channels may contribute to detrusor smooth muscle (DSM) excitability and contractility. However, the ability of SK and IK channels to control DSM spontaneous phasic and nerve-evoked contractions in human DSM remains unclear. We first investigated SK and IK channels molecular expression in native human DSM and further assessed their functional role using isometric DSM tension recordings and SK/IK channel-selective inhibitors.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
June 2012
The functional role of the voltage-gated K(+) (K(V)) channels in human detrusor smooth muscle (DSM) is largely unexplored. Here, we provide molecular, electrophysiological, and functional evidence for the expression of K(V)2.1, K(V)2.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
January 2012
In many species, β3-adrenergic receptors (β3-ARs) have been reported to play a primary role in pharmacologically induced detrusor smooth muscle (DSM) relaxation. However, their role in guinea pig DSM remains controversial. The aim of this study was to investigate whether β3-ARs are expressed in guinea pig DSM and to evaluate how BRL37344 and L-755,507, two selective β3-AR agonists, modulate guinea pig DSM excitability and contractility.
View Article and Find Full Text PDF