Publications by authors named "Serena Mostarda"

The continuous flow reaction of various aryl or heteroaryl bromides in toluene in the presence of THF (1.0 equiv) with sec-BuLi (1.1 equiv) provided at 25 °C within 40 sec the corresponding aryllithiums which were acylated with various functionalized N,N-dimethylamides including easily enolizable amides at -20 °C within 27 sec, producing highly functionalized ketones in 48-90 % yield (36 examples).

View Article and Find Full Text PDF

Continuous processing has been demonstrated to be a superior approach when applied to fast and energetic chemical transformations. Indeed, whereas classical batch or semi-batch methods require cryogenic conditions and slow addition rates of reactive species, flow technologies enable rapid mixing of synthetic partners in a highly controlled environment. As a result, low yielding and dangerous processes in batch can be performed at scale in a cost competitive and safer continuous manner.

View Article and Find Full Text PDF

A novel flow-based approach for the preparation of benzimidazol-2-one () scaffold by the 1,1'-carbonyldiimidazole (CDI)-promoted cyclocarbonylation of -phenylenediamine () is reported. Starting from a preliminary batch screening, the model reaction was successfully translated under flow conditions and optimised by means of design of experiment (DoE). The method allowed the efficient preparation of this privileged scaffold and to set up a general protocol for the multigram-scale preparation in high yield, purity, and productivity, and was successfully applied for the multigram flow synthesis of -(2-chlorobenzyl)-5-cyano-benzimidazol-2-one, which is a key synthon for hit-to-lead explorations in our anti-inflammatory drug discovery program.

View Article and Find Full Text PDF

Glucuronidation is considered an important detoxification pathway of bile acids especially in cholestatic conditions. Glucuronides are less toxic than the parent free forms and are more easily excreted in urine. However, the pathophysiological significance of bile acid glucuronidation is still controversial and debated among the scientific community.

View Article and Find Full Text PDF

The membrane-associated enzyme NAPE-PLD (N-acyl phosphatidylethanolamine specific-phospholipase D) generates the endogenous cannabinoid arachidonylethanolamide and other lipid signaling amides, including oleoylethanolamide and palmitoylethanolamide. These bioactive molecules play important roles in several physiological pathways including stress and pain response, appetite, and lifespan. Recently, we reported the crystal structure of human NAPE-PLD and discovered specific binding sites for the bile acid deoxycholic acid.

View Article and Find Full Text PDF

As a continuation of previous efforts in mapping functional hot spots on the bile acid scaffold, we here demonstrate that the introduction of a hydroxy group at the C11β position affords high selectivity for FXR. In particular, the synthesis and FXR/TGR5 activity of novel bile acids bearing different hydroxylation patterns at the C ring are reported and discussed from a structure-activity standpoint. The results obtained led us to discover the first bile acid derivative endowed with high potency and selectivity at the FXR receptor, 3α,7α,11β-trihydroxy-6α-ethyl-5β-cholan-24-oic acid (TC-100, 7) which also shows a remarkable physicochemical and pharmacological profile.

View Article and Find Full Text PDF

Bile acids are a peculiar class of steroidal compounds that never cease to amaze. From being simple detergents with a primary role in aiding the absorption of fats and fat-soluble vitamins, bile acids are now widely considered as crucial hormones endowed with genomic and non-genomic functions that are mediated by their interaction with several proteins including the nuclear receptor Farnesoid X Receptor (FXR). Taking advantages of the peculiar properties of bile acids in interacting with the FXR receptor, several biliary derivatives have been synthesized and tested as FXR ligands.

View Article and Find Full Text PDF

An efficient method for the C3-glucuronidation of bile acids is developed under flow conditions. A modular mesoreactor assisted flow set-up was combined with statistical design of experiments to speed up the optimization of the Koenigs-Knorr reaction in terms of yield, regioselectivity, costs, as well as technical and practical standpoints. Using the optimal conditions, selective glucuronidation of naturally occurring bile acids was successfully achieved offering a new, valuable route to C3-glucuronidated bile acids useful for biological, diagnostic and PK/ADMET investigations.

View Article and Find Full Text PDF