The neuronal loss caused by excessive glutamate release, or 'excitotoxicity', leads to several pathological conditions, including cerebral ischemia, epilepsy, and neurodegenerative diseases. Over-stimulation of presynaptic N-methyl-D-aspartate (NMDA) receptors is known to trigger and support glutamate spillover, while postsynaptic NMDA receptors are responsible for the subsequent apoptotic cascade. Almost all molecules developed so far are unable to selectively block presynaptic or postsynaptic NMDA receptors, therefore a deeper knowledge about intracellular NMDA pathways is required to design more specific inhibitors.
View Article and Find Full Text PDFHyperhomocysteinemia is recognized as a risk factor for several diseases, including cardiovascular and neurological conditions. Homocysteine (HCys) is a key metabolite involved in the biosynthesis and metabolism of methionine (Met), which plays a pivotal role in the physiological cell's life cycle. The biochemistry of Met is finely regulated by several enzymes that control HCys concentration.
View Article and Find Full Text PDFIn mammals, free d-aspartate (D-Asp) is abundant in the embryonic brain, while levels remain very low during adulthood as a result of the postnatal expression and activity of the catabolizing enzyme d-aspartate oxidase (DDO). Previous studies have shown that long-lasting exposure to nonphysiological, higher D-Asp concentrations in Ddo knockout (Ddo) mice elicits a precocious decay of synaptic plasticity and cognitive functions, along with a dramatic age-dependent expression of active caspase 3, associated with increased cell death in different brain regions, including hippocampus, prefrontal cortex, and substantia nigra pars compacta. Here, we investigate the yet unclear molecular and cellular events associated with the exposure of abnormally high D-Asp concentrations in cortical primary neurons and in the brain of Ddo mice.
View Article and Find Full Text PDFCurr Alzheimer Res
February 2018
Background: Alzheimer's disease (AD) is a neurodegenerative disorder recognized as the most common cause of chronic dementia among the ageing population. AD is histopathologically characterized by progressive loss of neurons and deposits of insoluble proteins, primarily composed of amyloid-β pelaques and neurofibrillary tangles (NFTs).
Methods: Several molecular processes contribute to the formation of AD cellular hallmarks.
Synaptic dysfunction has been recognized as an early feature occurring at the onset of Alzheimer's disease (AD). Compromised neurotransmission leads over time to synaptic loss and these events correlate with the cognitive decline that progressively affects AD patients.Protein SUMOylation (Small Ubiquitin-like MOdifier) is a post-translational modification (PTM) involved in several cellular processes including synaptic transmission.
View Article and Find Full Text PDF