Background: Intrahepatic cholangiocarcinoma (iCCA) is a highly malignant tumor characterized by an intensive desmoplastic reaction due to the exaggerated presence of the extracellular (ECM) matrix components. Liver fibroblasts close to the tumor, activated by transforming growth factor (TGF)-β1 and expressing high levels of α-smooth muscle actin (α-SMA), become cancer-associated fibroblasts (CAFs). CAFs are deputed to produce and secrete ECM components and crosstalk with cancer cells favoring tumor progression and resistance to therapy.
View Article and Find Full Text PDFThe male/female ratio of patients with hepatocellular carcinoma (HCC) is often unbalanced towards the male sex, indicating a sex predisposition for HCC development. A possible explanation may be attributed to different hormonal statuses, including the pro-inflammatory action of androgens in men and the protective effects of oestrogen against excessive inflammation in women. Although several studies have studied gene expression in patients with HCC, very few have attempted to identify features that could be distinctive between male and female patients.
View Article and Find Full Text PDFBackground: Though the precise criteria for accessing LT are consistently being applied, HCC recurrence (HCC-R_LT) still affects more than 15% of the patients. We analyzed the clinical, histopathological, and biological features of patients with HCC to identify the predictive factors associated with cancer recurrence and survival after LT.
Methods: We retrospectively analyzed 441 patients with HCC who underwent LT in our center.
Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive cancer with limited therapeutic options and short overall survival. iCCA is characterized by a strong desmoplastic reaction in the surrounding ecosystem that likely affects tumoral progression. Overexpression of the Notch pathway is implicated in iCCA development and progression.
View Article and Find Full Text PDFProteoglycans are a class of highly glycosylated proteins expressed in virtually all tissues, which are localized within membranes, but more often in the pericellular space and extracellular matrix (ECM), and are involved in tissue homeostasis and remodeling of the stromal microenvironment during physiological and pathological processes, such as tissue regeneration, angiogenesis, and cancer. In general, proteoglycans can perform signaling activities and influence a range of physical, chemical, and biological tissue properties, including the diffusivity of small electrolytes and nutrients and the bioavailability of growth factors. While the dysregulated expression of some proteoglycans is observed in many cancers, whether they act as supporters or limiters of neoplastic progression is still a matter of controversy, as the tumor promoting or suppressive function of some proteoglycans is context dependent.
View Article and Find Full Text PDFBackground: Intrahepatic Cholangiocarcinoma (iCCA) is characterized by a strong stromal reaction playing a role in tumor progression. Thymus cell antigen 1 (THY1), also called Cluster of Differentiation 90 (CD90), is a key regulator of cell-cell and cell-matrix interaction. In iCCA, CD90 has been reported to be associated with a poor prognosis.
View Article and Find Full Text PDFThe balance between anti-tumor and tumor-promoting immune cells, such as CD4+ Th1 and regulatory T cells (Tregs), respectively, is assumed to dictate the progression of hepatocellular carcinoma (HCC). The transforming growth factor beta (TGFβ) markedly shapes the HCC microenvironment, regulating the activation state of multiple leukocyte subsets and driving the differentiation of cancer associated fibroblasts (CAFs). The fibrotic (desmoplastic) reaction in HCC tissue strongly depends on CAFs activity.
View Article and Find Full Text PDFSorafenib and regorafenib administration is among the preferential approaches to treat hepatocellular carcinoma (HCC), but does not provide satisfactory benefits. Intensive crosstalk occurring between cancer cells and other multiple non-cancerous cell subsets present in the surrounding microenvironment is assumed to affect tumor progression. This interplay is mediated by a number of soluble and structural extracellular matrix (ECM) proteins enriching the stromal milieu.
View Article and Find Full Text PDFDifferent subsets of lymphocytes have the capacity to promote or counteract the progression of solid cancers, including hepatocellular carcinoma (HCC). Therefore, to determine the infiltrative ability and functional status of major immune cell subtypes into tumor may lead to novel insights from the perspective of immunotherapy. After obtaining single cell suspensions from freshly collected specimens of HCC tumor, along with paired peritumor tissues and peripheral blood mononuclear cells (PBMCs) from 14 patients, we flow-cytometrically identified and quantified the relative frequencies of lymphocyte subsets within the tissues of origin.
View Article and Find Full Text PDFIntrahepatic cholangiocarcinoma (iCCA) is a deadly disease with rising incidence and few treatment options. An altered expression and/or activation of NOTCH1-3 receptors has been shown to play a role in iCCA development and progression. In this study, we established a new CCA patient-derived xenograft model, which was validated by immunohistochemistry and transcriptomic analysis.
View Article and Find Full Text PDFCalcium is the most abundant element in the human body. Its role is essential in physiological and biochemical processes such as signal transduction from outside to inside the cell between the cells of an organ, as well as the release of neurotransmitters from neurons, muscle contraction, fertilization, bone building, and blood clotting. As a result, intra- and extracellular calcium levels are tightly regulated by the body.
View Article and Find Full Text PDFTransforming growth factor beta (TGF-β) is a pleiotropic cytokine with dual role in hepatocellular carcinoma (HCC). It acts as tumor-suppressor and tumor-promoter in the early and late stage respectively. TGF-β influences the tumor-stroma cross-talk affecting the tumoral microenvironment.
View Article and Find Full Text PDFThe Transforming Growth Factor beta (TGFβ) and Bone Morphogenic Protein (BMP) pathways intersect at multiple signaling hubs and cooperatively or counteractively participate to bring about cellular processes which are critical not only for tissue morphogenesis and organogenesis during development, but also for adult tissue homeostasis. The proper functioning of the TGFβ/BMP pathway depends on its communication with other signaling pathways and any deregulation leads to developmental defects or diseases, including fibrosis and cancer. In this review we explore the cellular and physio-pathological contexts in which the synergism or antagonism between the TGFβ and BMP pathways are crucial determinants for the normal developmental processes, as well as the progression of fibrosis and malignancies.
View Article and Find Full Text PDFCholangiocarcinoma (CCA) is a deadly disease. While surgery may attain cure in a minor fraction of cases, therapeutic options in either the adjuvant or advanced setting are limited. The possibility of advancing the efficacy of therapeutic approaches to CCA relies on understanding its molecular pathogenesis and developing rational therapies aimed at interfering with oncogenic signalling networks that drive and sustain cholangiocarcinogenesis.
View Article and Find Full Text PDFTherapeutic attempts to treat hepatocellular carcinoma (HCC) frequently result in a poor response or treatment failure. The efficacy of approved drugs and survival expectancies is affected by an ample degree of variability that can be explained at least in part by the enormous between-patient cellular and molecular heterogeneity of this neoplasm. Transforming growth factor-β (TGF-β) is hyperactivated in a large fraction of HCCs, where it influences complex interactive networks covering multiple cell types and a plethora of other local soluble ligands, ultimately establishing several malignancy traits.
View Article and Find Full Text PDFMetabolic reprogramming is a common hallmark of cancer cells. Although some biochemical features have been clarified, there is still much to learn about cancer cell metabolism and its regulation. Aspartate-glutamate carrier isoform 1 (AGC1), encoded by SLC25A12 gene, catalyzes an exchange between intramitochondrial aspartate and cytosolic glutamate plus a proton across the mitochondrial membrane, so supplying aspartate to the cytosol.
View Article and Find Full Text PDFTransforming growth factor-β (TGF-β) is a cytokine essential for the induction of the fibrotic response and for the activation of the cancer stroma. Strong evidence suggests that a strong cross-talk exists among TGF-β and the tissue extracellular matrix components. TGF-β is stored in the matrix as part of a large latent complex bound to the latent TGF-β binding protein (LTBP) and matrix binding of latent TGF-β complexes, which is required for an adequate TGF-β function.
View Article and Find Full Text PDFCancer stem cells (CSCs) niche in the tumor microenvironment is responsible for cancer recurrence and therapy failure. To better understand its molecular and biological involvement in hepatocellular carcinoma (HCC) progression, one can design more effective therapies and tailored then to individual patients. While sorafenib is currently the only approved drug for first-line treatment of advanced stage HCC, its role in modulating the CSC niche is estimated to be small.
View Article and Find Full Text PDFThe aim of this study was to design a road map for personalizing cancer therapy in hepatocellular carcinoma (HCC) by using molecular pattern diagnostics. As an exploratory study, we investigated molecular patterns of tissues of two tumors from individual HCC patients, which in previous experiments had shown contrasting reactions to the phase 2 transforming growth factor beta receptor 1 inhibitor galunisertib. Cancer-driving molecular patterns encompass - inter alias - altered transcription profiles and somatic mutations in coding regions differentiating tumors from their respective peritumoral tissues and from each other.
View Article and Find Full Text PDFTransforming growth factor-beta (TGF-β) signaling has gained extensive interest in hepatocellular carcinoma (HCC). The small molecule kinase inhibitor galunisertib, targeting the TGF-β receptor I (TGF-βRI), blocks HCC progression in preclinical models and shows promising effects in ongoing clinical trials. As the drug is not similarly effective in all patients, this study was aimed at identifying new companion diagnostics biomarkers for patient stratification.
View Article and Find Full Text PDF