Publications by authors named "Serena H Lu"

Article Synopsis
  • Genome editing has the potential to transform treatments for genetic diseases, but a poor understanding of how DNA repair works in cells, particularly nondividing ones like neurons, limits its effectiveness.
  • In this study, researchers used induced pluripotent stem cells (iPSCs) to analyze how neurons repair DNA damage caused by the Cas9 editing tool, finding that it takes neurons significantly longer to resolve this damage compared to iPSCs.
  • The research revealed that neurons unexpectedly activate certain DNA repair genes traditionally linked to cell division, and by manipulating these responses, scientists could steer neuronal repair towards more precise and effective gene editing results.
View Article and Find Full Text PDF

Sarcomeres are fundamental to cardiac muscle contraction. Their impairment can elicit cardiomyopathies, leading causes of death worldwide. However, the molecular mechanism underlying sarcomere assembly remains obscure.

View Article and Find Full Text PDF

Recording ion fluctuations surrounding biological cells with a nanoelectronic device offers seamless integration of nanotechnology into living organisms and is essential for understanding cellular activities. The concentration of potassium ion in the extracellular fluid () is a critical determinant of cell membrane potential and must be maintained within an appropriate range. Alteration in can affect neuronal excitability, induce heart arrhythmias, and even trigger seizure-like reactions in the brain.

View Article and Find Full Text PDF

Background: Mutations in genes encoding sarcomeric proteins lead to failures in sarcomere assembly, the building blocks of contracting muscles, resulting in cardiomyopathies that are a leading cause of morbidity and mortality worldwide. Splicing variants of sarcomeric proteins are crucial at different stages of myofibrillogenesis, accounting for sarcomeric structural integrity. RBM24 (RNA-binding motif protein 24) is known as a tissue-specific splicing regulator that plays an essential role in cardiogenesis.

View Article and Find Full Text PDF

Human ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) is an evolutionarily conserved core subunit of mitochondrial respiratory chain complex III. We recently identified the disease-associated variants of UQCRC1 from patients with familial parkinsonism, but its function remains unclear. Here we investigate the endogenous function of UQCRC1 in the human neuronal cell line and the Drosophila nervous system.

View Article and Find Full Text PDF