Publications by authors named "Serena Guidotti"

The functional derangement affecting human chondrocytes during osteoarthritis (OA) onset and progression is sustained by the failure of major homeostatic mechanisms. This makes them more susceptible to oxidative stress (OS), which can induce DNA damage responses and exacerbate stress-induced senescence. The knockdown (KD) of IκB kinase α (IKKα), a dispensable protein in healthy articular cartilage physiology, was shown to increase the survival and replication potential of human primary OA chondrocytes.

View Article and Find Full Text PDF

During osteoarthritis development, chondrocytes are subjected to a functional derangement. This increases their susceptibility to stressful conditions such as oxidative stress, a characteristic of the aging tissue, which can further provoke extrinsic senescence by DNA damage responses. It was previously observed that IκB kinase α knockdown increases the replicative potential of primary human OA chondrocytes cultured in monolayer and the survival of the same cells undergoing hypertrophic-like differentiation in 3-D.

View Article and Find Full Text PDF

Oxidative stress (OS) contributes to Osteoarthritis (OA) pathogenesis and its effects are worsened by the impairment of homeostatic mechanisms such as autophagy in OA chondrocytes. Rescue of an efficient autophagic flux could therefore reduce the bulk of damaged molecules, and at the same time improve cell function and viability. As a promising dietary or intra-articular supplement to rescue autophagy in OA chondrocytes, we tested spermidine (SPD), known to induce autophagy and to reduce OS in several other cellular models.

View Article and Find Full Text PDF
Article Synopsis
  • Natural polyamines play a crucial role in the differentiation of stem cells during skeletal development, with higher levels found in adipose-derived stem cells (ASC) compared to mature skeletal cells.
  • Research shows that polyamines like spermine (SPM) and spermidine (SPD) can protect ASC from oxidative DNA damage, particularly in relation to patient age and BMI.
  • The potential involvement of autophagy in the protective effects of polyamines suggests they could be valuable for regenerative medicine and cell-based therapies.
View Article and Find Full Text PDF

Different sources of mesenchymal stromal cells can be considered for regenerative medicine applications. Here we analyzed human adipose-derived stromal cells from infrapatellar fat pad (IFPSC) of osteoarthritis patients, representing a very interesting candidate for cartilage regeneration. No data are available concerning IFPSC stability after in vitro expansion.

View Article and Find Full Text PDF

Background: Hydroxytyrosol (HT), a major phenolic antioxidant found in olive oil, can afford protection from oxidative stress in several types of non-tumoral cells, including chondrocytes. Autophagy was recently identified as a protective process during osteoarthritis (OA) development and critical for survival of chondrocytes. Therefore we have investigated the possibility to modulate chondrocyte autophagy by HT treatment.

View Article and Find Full Text PDF

Introduction: Recent evidence suggests that GSK3 activity is chondroprotective in osteoarthritis (OA), but at the same time, its inactivation has been proposed as an anti-inflammatory therapeutic option. Here we evaluated the extent of GSK3β inactivation in vivo in OA knee cartilage and the molecular events downstream GSK3β inactivation in vitro to assess their contribution to cell senescence and hypertrophy.

Methods: In vivo level of phosphorylated GSK3β was analyzed in cartilage and oxidative damage was assessed by 8-oxo-deoxyguanosine staining.

View Article and Find Full Text PDF

Hydroxytyrosol (HT), a phenolic compound mainly derived from olives, has been proposed as a nutraceutical useful in prevention or treatment of degenerative diseases. In the present study we have evaluated the ability of HT to counteract the appearance of osteoarthritis (OA) features in human chondrocytes. Pre-treatment of monolayer cultures of chondrocytes with HT was effective in preventing accumulation of reactive oxidant species (ROS), DNA damage and cell death induced by H2O2 exposure, as well as the increase in the mRNA level of pro-inflammatory, matrix-degrading and hypertrophy marker genes, such as iNOS, COX-2, MMP-13, RUNX-2 and VEGF.

View Article and Find Full Text PDF

The first step in skeleton development is the condensation of mesenchymal precursors followed by any of two different types of ossification, depending on the type of bone segment: in intramembranous ossification, the bone is deposed directly in the mesenchymal anlagen, whereas in endochondral ossification, the bone is deposed onto a template of cartilage that is subsequently substituted by bone. Polyamines and polyamine-related enzymes have been implicated in bone development as global regulators of the transcriptional and translational activity of stem cells and pivotal transcription factors. Therefore, it is tempting to investigate their use as a tool to improve regenerative medicine strategies in orthopedics.

View Article and Find Full Text PDF

The molecular mechanisms underlying spermine osteo-inductive activity on human adipose-derived stem cells (ASCs) grown in 3-dimensional (3D) cultures were investigated. Spermine belongs to the polyamine family, naturally occurring, positively charged polycations that are able to control several cellular processes. Spermine was used at a concentration close to that found in platelet-rich plasma (PRP), an autologous blood product containing growth and differentiation factors, which has recently become popular in in vitro and in vivo bone healing and engineering.

View Article and Find Full Text PDF