WHIRLY2 is a single-stranded DNA binding protein associated with mitochondrial nucleoids. In the mutant of , a major proportion of leaf mitochondria has an aberrant structure characterized by disorganized nucleoids, reduced abundance of cristae, and a low matrix density despite the fact that the macroscopic phenotype during vegetative growth is not different from wild type. These features coincide with an impairment of the functionality and dynamics of mitochondria that have been characterized in detail in wild-type and mutant cell cultures.
View Article and Find Full Text PDFRoot growth is a fundamental process in plants and assures nutrient and water uptake required for efficient photosynthesis and metabolism. Postembryonic development of roots is controlled by the functionality of the meristem. Several hormones and signaling molecules regulate the size of the meristem, and among them, auxins play a major role.
View Article and Find Full Text PDFThe adaptation to dehydration and rehydration cycles represents a key step in the evolution of photosynthetic organisms and requires the development of mechanisms by which to sense external stimuli and translate them into signaling components. In this study, we used genetically encoded fluorescent sensors to detect specific transient increases in the Ca2+ concentration in the moss Physcomitrella patens upon dehydration and rehydration treatment. Observation of the entire plant in a single time-series acquisition revealed that various cell types exhibited different sensitivities to osmotic stress and that Ca2+ waves originated from the basal part of the gametophore and were directionally propagated towards the top of the plant.
View Article and Find Full Text PDFHomologues of the p23 co-chaperone of HSP90 are present in all eukaryotes, suggesting conserved functions for this protein throughout evolution. Although p23 has been extensively studied in animal systems, little is known about its function in plants. In the present study, the functional characterization of the two isoforms of p23 in Arabidopsis thaliana is reported, suggesting a key role of p23 in the regulation of root development.
View Article and Find Full Text PDF