Publications by authors named "Serena Giannelli"

Neuroinflammation plays a key role in exacerbating dopaminergic neuron (DAN) loss in Parkinson's disease (PD). However, it remains unresolved how to effectively normalize this immune response given the complex interplay between the innate and adaptive immune responses occurring within a scarcely accessible organ like the brain. In this study, we uncovered a consistent correlation between neuroinflammation, brain parenchymal lymphocytes, and DAN loss among several commonly used mouse models of PD generated by a variety of pathological triggers.

View Article and Find Full Text PDF

Although adeno-associated virus 9 (AAV9) has been highly exploited as delivery platform for gene-based therapies, its efficacy is hampered by low efficiency in crossing the adult blood-brain barrier (BBB) and pronounced targeting to the liver upon intravenous delivery. We generated a new galactose binding-deficient AAV9 peptide display library and selected two new AAV9 engineered capsids with enhanced targeting in mouse and marmoset brains after intravenous delivery. Interestingly, the loss of galactose binding greatly reduced undesired targeting to peripheral organs, particularly the liver, while not compromising transduction of the brain vasculature.

View Article and Find Full Text PDF
Article Synopsis
  • Down syndrome (DS) is linked to Alzheimer's disease (AD) through disruptions in cholesterol metabolism, which is essential for brain health.
  • In a study using Ts2Cje mouse models of DS, researchers found that key genes involved in cholesterol processing were downregulated, leading to lower cholesterol levels and increased oxidative stress.
  • The Ts2 mice displayed heightened inflammation in the brain, marked by elevated levels of specific cytokines, suggesting that both DS and AD may share similar underlying biochemical issues that contribute to their respective neurodegenerative processes.
View Article and Find Full Text PDF

Huntington's disease (HD) is a neurodegenerative disorder caused by CAG-repeat expansions in the huntingtin (HTT) gene. The resulting mutant HTT (mHTT) protein induces toxicity and cell death via multiple mechanisms and no effective therapy is available. Here, we employ a genome-wide screening in pluripotent mouse embryonic stem cells (ESCs) to identify suppressors of mHTT toxicity.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are studying how certain signals around retinal cells help decide what these cells become after they grow up.
  • They found that when there are fewer cells around, some cells can act like both rod cells and Müller glial cells, which are two different types of retinal cells.
  • Understanding how cell crowding affects these cells could help scientists better develop treatments for eye diseases by keeping the cells focused on being rods instead of turning into a mix of both types.
View Article and Find Full Text PDF

Considerable evidence indicates that cholesterol oxidation products, named oxysterols, play a key role in several events involved in Alzheimer's disease (AD) pathogenesis. Although the majority of oxysterols causes neuron dysfunction and degeneration, 24-hydroxycholesterol (24-OHC) has recently been thought to be neuroprotective also. The present study aimed at supporting this concept by exploring, in SK-N-BE neuroblastoma cells, whether 24-OHC affected the neuroprotective SIRT1/PGC1α/Nrf2 axis.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) vectors have been successfully exploited in gene therapy applications for the treatment of several genetic disorders. AAV is considered an episomal vector, but it has been shown to integrate within the host cell genome after the generation of double-strand DNA breaks or nicks. Although AAV integration raises some safety concerns, it can also provide therapeutic benefit; the direct intrathymic injection of an AAV harboring a therapeutic transgene results in integration in T-cell progenitors and long-term T-cell immunity.

View Article and Find Full Text PDF
Article Synopsis
  • Wolfram syndrome 1 (WS1) is a rare genetic disorder characterized by mutations affecting retinal function, leading to issues like blindness, diabetes, and neurological problems.
  • Research on mutant mice shows early signs of retinal dysfunction and optic nerve damage before noticeable retinal ganglion cell degeneration.
  • The study highlights a metabolic impairment in retinal cells due to loss of specific transport proteins, indicating a potential window for developing new therapies aimed at improving energy metabolism in affected areas long before significant cell loss occurs.
View Article and Find Full Text PDF

The strongest genetic risk factor for sporadic Alzheimer's disease (AD) is the presence of the ε4 allele of the apolipoprotein E (ApoE) gene, the major apolipoprotein involved in brain cholesterol homeostasis. Being astrocytes the main producers of cholesterol and ApoE in the brain, we investigated the impact of the ApoE genotype on astrocyte cholesterol homeostasis. Two mouse astrocytic cell lines expressing the human ApoE3 or ApoE4 isoform were employed.

View Article and Find Full Text PDF

Triplication of the SNCA gene, encoding the protein alpha-Synuclein (αSyn), is a rare cause of aggressive and early-onset parkinsonism. Herein, we generated iPSCs from two siblings with a recently described compact SNCA gene triplication and suffering from severe motor impairments, psychiatric symptoms, and cognitive deterioration. Using CRISPR/Cas9 gene editing, each SNCA copy was inactivated by targeted indel mutations generating a panel of isogenic iPSCs with a decremental number from 4 down to none of functional SNCA gene alleles.

View Article and Find Full Text PDF

Protocadherin-19 (PCDH19) is a synaptic cell-adhesion molecule encoded by X-linked PCDH19, a gene linked with epilepsy. Here, we report a synapse-to-nucleus signaling pathway through which PCDH19 bridges neuronal activity with gene expression. In particular, we describe the NMDA receptor (NMDAR)-dependent proteolytic cleavage of PCDH19, which leads to the generation of a PCDH19 C-terminal fragment (CTF) able to enter the nucleus.

View Article and Find Full Text PDF

Chronic inflammation represents a main event in the onset and progression of atherosclerosis and is closely associated with oxidative stress in a sort of vicious circle that amplifies and sustains all stages of the disease. Key players of atherosclerosis are monocytes/macrophages. According to their pro- or anti-inflammatory phenotype and biological functions, lesional macrophages can release various mediators and enzymes, which in turn contribute to plaque progression and destabilization or, alternatively, lead to its resolution.

View Article and Find Full Text PDF

Dravet syndrome is a severe epileptic encephalopathy caused primarily by haploinsufficiency of the SCN1A gene. Repetitive seizures can lead to endurable and untreatable neurological deficits. Whether this severe pathology is reversible after symptom onset remains unknown.

View Article and Find Full Text PDF

Recent findings in human samples and animal models support the involvement of inflammation in the development of Parkinson's disease. Nevertheless, it is currently unknown whether microglial activation constitutes a primary event in neurodegeneration. We generated a new mouse model by lentiviral-mediated selective α-synuclein (αSYN) accumulation in microglial cells.

View Article and Find Full Text PDF

The development of Alzheimer's disease (AD) is influenced by several events, among which the dysregulation of cholesterol metabolism in the brain plays a major role. Maintenance of brain cholesterol homeostasis is essential for neuronal functioning and brain development. To maintain the steady-state level, excess brain cholesterol is converted into the more hydrophilic metabolite 24-S-hydroxycholesterol (24-OHC), also called cerebrosterol, by the neuron-specific enzyme CYP46A1.

View Article and Find Full Text PDF
Article Synopsis
  • Reactive astrocytes in Alzheimer's disease (AD) are linked to neuronal loss and cognitive deficits, with their role in neuron changes still not fully understood.
  • Oxysterols, crucial for cholesterol metabolism in the brain, correlate with AD progression and may drive astrocyte reactivity, impacting neuronal health.
  • Research found that oxysterols cause morphological changes in astrocytes and increase the release of markers like lipocalin-2 (Lcn2), which negatively affects synapses and neuron health.
View Article and Find Full Text PDF

Atherosclerosis is a degenerative disease characterized by lesions that develop in the wall of large- and medium-sized arteries due to the accumulation of low-density lipoproteins (LDLs) in the intima. A growing bulk of evidence suggests that cholesterol oxidation products, known as oxysterols, and the aldehyde 4-hydroxy-2-nonenal (HNE), the major pro-atherogenic components of oxidized LDLs, significantly contribute to atherosclerotic plaque progression and destabilization, with eventual plaque rupture. The involvement of certain members of the protein convertase subtilisin/kexin proteases (PCSKs) in atherosclerosis has been recently hypothesized.

View Article and Find Full Text PDF

Friedreich's ataxia (FRDA) is an autosomal-recessive neurodegenerative and cardiac disorder which occurs when transcription of the FXN gene is silenced due to an excessive expansion of GAA repeats into its first intron. Herein, we generate dorsal root ganglia organoids (DRG organoids) by in vitro differentiation of human iPSCs. Bulk and single-cell RNA sequencing show that DRG organoids present a transcriptional signature similar to native DRGs and display the main peripheral sensory neuronal and glial cell subtypes.

View Article and Find Full Text PDF
Article Synopsis
  • - Rett syndrome is an incurable disorder caused by mutations in the MeCP2 gene, which can lead to neurological issues when overexpressed.
  • - Researchers developed a gene therapy using a specific viral vector (AAV-PHP.eB) that delivers a modified transgene to maintain proper levels of the MeCP2 protein, which improved symptoms in mice.
  • - While the therapy worked well for female mutant and wild-type mice, male mutant mice showed a strong immune response that required immunosuppression to address.
View Article and Find Full Text PDF

Epilepsy is a major health burden, calling for new mechanistic insights and therapies. CRISPR-mediated gene editing shows promise to cure genetic pathologies, although hitherto it has mostly been applied ex vivo. Its translational potential for treating non-genetic pathologies is still unexplored.

View Article and Find Full Text PDF

Dravet syndrome (DS) is a severe epileptic encephalopathy caused mainly by heterozygous loss-of-function mutations of the SCN1A gene, indicating haploinsufficiency as the pathogenic mechanism. Here we tested whether catalytically dead Cas9 (dCas9)-mediated Scn1a gene activation can rescue Scn1a haploinsufficiency in a mouse DS model and restore physiological levels of its gene product, the Na1.1 voltage-gated sodium channel.

View Article and Find Full Text PDF

Neuroferritinopathy (NF) is a movement disorder caused by alterations in the L-ferritin gene that generate cytosolic free iron. NF is a unique pathophysiological model for determining the direct consequences of cell iron dysregulation. We established lines of induced pluripotent stem cells from fibroblasts from two NF patients and one isogenic control obtained by CRISPR/Cas9 technology.

View Article and Find Full Text PDF

In Alzheimer's disease (AD), both cholesterol and glucose dysmetabolism precede the onset of memory deficit and contribute to the disease's progression. It is indeed now believed that oxidized cholesterol in the form of oxysterols and altered glucose uptake are the main triggers in AD affecting production and clearance of Aβ, and tau phosphorylation. However, only a few studies highlight the relationship between them, suggesting the importance of further extensive studies on this topic.

View Article and Find Full Text PDF