Publications by authors named "Serena Fedi"

The anionic cluster [Pt(19)(CO)(22)](4-) (1), of pentagonal symmetry, reacts with CO and AuPPh(3)(+) fragments. Upon increasing the Au:Pt(19) molar ratio, different species are sequentially formed, but only the last two members of the series could be characterized by X-ray diffraction, namely, [Pt(19)(CO)(24)(μ(4)-AuPPh(3))(3)](-) (2) and [Pt(19)(CO)(24){μ(4)-Au(2)(PPh(3))(2)}(2)] (3). The metallic framework of the starting cluster is completely modified after the addition of CO and AuL(+), and both products display the same platinum core of trigonal symmetry, with closely packed metal atoms.

View Article and Find Full Text PDF

A detailed study of the reaction between [Ni(6)(CO)(12)](2-) and [AuCl(4)](-) afforded the isolation of the new Ni-Au cluster [Ni(12)Au(CO)(24)](3-) as well as identifying an improved synthesis for the previously reported [Ni(32)Au(6)(CO)(44)](6-). The new [Ni(12)Au(CO)(24)](3-) cluster is composed by two [Ni(6)(CO)(12)](2-) moieties coordinated to a central Au(I) ion, as determined by X-ray diffraction. It is noteworthy that the two [Ni(6)(CO)(12)](2-) fragments display different geometries, i.

View Article and Find Full Text PDF

Hybrid magnetic hydrogels are of interest for applications in biomedical science as controlled drug-delivery systems. We have developed a strategy to obtain novel hybrid hydrogels with magnetic nanoparticles (NPs) of CoFe(2)O(3) and Fe(3)O(4) as crosslinker agents of carboxymethylcellulose (CMC) or hyaluronic acid (HYAL) polymers and we have tested these systems for controlled doxorubicin release. The magnetic NPs are functionalized with (3-aminopropyl)trimethoxysilane (APTMS) in order to introduce amino groups on the surface.

View Article and Find Full Text PDF

Six metal carbido-carbonyl clusters have been isolated and recognized as members of a multivalent family based on the dioctahedral Rh(10)(C)(2) frame, with variable numbers of CO ligands, AuPPh(3) moieties, and anionic charge: [Rh(10)(C)(2)(CO)(x)(AuPPh(3))(y)](n-) (x = 18, 20; y = 4, 5, 6; n = 0, 1, 2). Anions [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(4)](-) ([2](-)) and [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(4)](2-) ([2](2-)) have been obtained by the reduction of [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(4)] (2) under N(2), while [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(5)](-) ([3](-)) was obtained from [Rh(10)(C)(2)(CO)(20)(AuPPh(3))(4)] (1) by reduction under a CO atmosphere. [3](-) can be better obtained by the addition of AuPPh(3)Cl to [2](2-).

View Article and Find Full Text PDF

Geminal bisphosphonates (BPs), used in the clinic for the treatment of hypercalcaemia and skeletal metastases, have been also exploited for promoting the specific accumulation of platinum antitumor drugs in bone tissue. In this work, the platinum dinuclear complex [{Pt(en)}(2)(μ-AHBP-H(2))](+) (1) (the carbon atom bridging the two phosphorous atoms carrying a 2-ammonioethyl and a hydroxyl group, AHBP-H(2)) has been used as scaffold for the synthesis of a Pt(II) trinuclear complex, [{Pt(en)}(3)(μ-AHBP)](+) (2), and a Pt(IV) adamantane-shaped dinuclear complex featuring an oxo-bridge, [{Pt(IV)(en)Cl}(2)(μ-O)(μ-AHBP-H(2))](+) (3) (X-ray structure). Compound 2 undergoes a reversible, pH dependent, rearrangement with a neat switch point around pH = 5.

View Article and Find Full Text PDF

The reactions of [NEt(4)](2)[Ni(6)(CO)(12)] with miscellaneous carbon halides (e.g. CCl(4), C(4)Cl(6)) in CH(2)Cl(2) have been extensively investigated particularly focusing on the stoichiometric ratio of the reagents and reaction temperature.

View Article and Find Full Text PDF

Reactions of 2,6-diacetylpyridine dioxime (dapdoH₂) with Mn(NO₃)₂ or Mn(SO₃CF₃)₂ under a variety of conditions or co-ligands yield compounds with the formula [Mn₆O₂(OMe)₂(dapdo)₂(dapdoH)₄](X)₂ in which X = NO₃⁻ (1) or SO₃CF₃⁻ (2), [Mn₈O₂(dapdo)₆(NO₃)₂]·H₂O (3) and [Mn(dapdoH₂)(N₃)₂](n) (4). Compounds 1, 3 and 4 were structurally characterized and equivalent structures for 1 and 2 were inferred from spectroscopic and analytical results. Compounds 1 and 2 consist of hexanuclear Mn₂(II)Mn₄(III) complexes whereas 3 consists of an octanuclear Mn₆(II)Mn₂(III) cluster in which the manganese atoms exhibit a rare bicapped elongated octahedral topology.

View Article and Find Full Text PDF

The halide ligands of [Fe(4)C(CO)(12)(CuCl)(2)](2-) (1) and [Fe(5)C(CO)(14)CuCl](2-) (2) can be displaced by N-, P- or S-donors. Beside substitution, the clusters easily undergo structural rearrangements, with loss/gain of metal atoms, and formation of Fe(4)Cu/Fe(4)Cu(3) metallic frameworks. Thus, the reaction of 1 with excess dppe yielded [{Fe(4)C(CO)(12)Cu}(2)(μ-dppe)](2-) (3).

View Article and Find Full Text PDF

The redox properties of sumanene C(21)H(12) and its concave Fe(II) complex [(eta(5)-C(5)H(5))Fe(eta(6)-C(21)H(12))](+) have been elucidated through an electrochemical study in non-aqueous solvents, i.e. N,N-dimethylformamide (DMF) and acetonitrile (MeCN).

View Article and Find Full Text PDF

The reaction of [Co(6)C(CO)(15)](2-) with 2 equiv of PtCl(2)(Et(2)S)(2) affords the new heterobimetallic [Co(8)Pt(4)C(2)(CO)(24)](2-), [1](2-), carbonyl cluster. [1](2-) undergoes reversible chemical and electrochemical oxidation and reduction processes disclosing a complete series of [1](n-) (n = 1-4) clusters. The mono- and dianion of [1](n-) have been isolated as their tetra-substituted ammonium salts and fully characterized by means of IR, (13)C NMR, ESI-MS, and X-ray crystallography.

View Article and Find Full Text PDF

Heating (80 degrees C) the electron-precise, Sn-centred, icosahedral cluster [Rh(12)Sn(CO)(27)](4-) under a nitrogen atmosphere affords in sequence the electron-deficient icosahedral [Rh(12)Sn(CO)(26)](4-) and [Rh(12)Sn(CO)(25)](4-) derivatives. The reaction is reversible in solution and the parent compound is quantitatively regenerated upon exposure to carbon monoxide. The reaction course has been unravelled via a combination of Band-target Entropy Minimization (BTEM) IR analysis and X-ray studies.

View Article and Find Full Text PDF

Reaction of the [Ni(9)C(CO)(17)](2-) dianion with CdCl(2)2.5 H(2)O in THF affords the novel bimetallic Ni--Cd carbide carbonyl clusters [H(6-n)Ni(30)C(4)(CO)(34)(micro(5)-CdCl)(2)](n-) (n=3-6), which undergo several protonation-deprotonation equilibria in solution depending on the basicity of the solvent or upon addition of acids or bases. Although the occurrence in solution of these equilibria complicates the pertinent electrochemical studies on their electron-transfer activity, they clearly indicate that the clusters [H(6-n)Ni(30)C(4)(CO)(34)(micro(5)-CdCl)(2)](n-) (n=3-6), as well as the structurally related [H(6-n)Ni(34)C(4)(CO)(38)](n-) (n=4-6), undergo reversible or partially reversible redox processes and provide circumstantial and unambiguous evidence for the presence of hydrides for n=3, 4 and 5.

View Article and Find Full Text PDF

The dication [(eta6-C6Me6)Ru(eta6-C20H10)]2+ in propylene carbonate solution exhibits a sequence of reduction processes that is either metal-centered [Ru(II)/Ru(I)/Ru(0)] or ligand-centered. The marginally stable Ru(I) monocation [(eta6-C6Me6)Ru(eta6-C20H10)]+ has been characterized by EPR spectroscopy. The electrochemistry of C20H10 and EPR features of its stable monoanion [C20H10]- have also been revisited.

View Article and Find Full Text PDF

A reinvestigation of the redox chemistry of [Rh7(CO)16]3- resulted in the finding of new alternative syntheses for a series of previously reported Rh-centered carbonyl clusters, i.e., [H4-nRh14(CO)25]n- (n = 3 and 4) and [Rh17(CO)30]3-, as well as new species such as a different isomer of [Rh15(CO)27]3-, the carbonyl-substituted [Rh15(CO)25(MeCN)2]3-, and the conjuncto [Rh17(CO)37]3- clusters.

View Article and Find Full Text PDF