Depending on the synthesis route, the oxygen ion electrolyte SrScGaO shows two polymorphs, a brownmillerite and a cubic perovskite framework. In order to better explore oxygen diffusion pathways and mechanisms, we report here on a multitechnical approach to characterize local structural changes for SrScGaO polymorphs as a function of temperature, using a neutron pair distribution function (PDF) analysis together with an extended X-ray absorption fine structure (EXAFS) analysis. While for the brownmillerite type structure PDF and Rietveld refinements yield identical structural descriptions, considerable differences are found for the cubic oxygen-deficient polymorph.
View Article and Find Full Text PDFOxygen-deficient SrScGaO single crystals with a cubic perovskite structure were grown by the floating-zone technique. The transparent crystals of this pure 3D oxygen electrolyte are metastable at ambient temperature, showing one-sixth of all oxygen positions vacant. While neutron single-crystal diffraction, followed by maximum entropy analysis, revealed a strong anharmonic displacements for the oxygen atoms, a predominant formation of ScO octahedra and GaO tetrahedra is indicated by Raman spectroscopic studies, resulting in a complex oxygen defect structure with short-range order.
View Article and Find Full Text PDFCystinosin mediates an ATP-dependent cystine efflux from lysosomes and causes, if mutated, nephropathic cystinosis, a rare inherited lysosomal storage disease. Alternative splicing of the last exon of the cystinosin sequence produces the cystinosin-LKG isoform that is characterized by a different C-terminal region causing changes in the subcellular distribution of the protein. We have constructed RFP-tagged proteins and demonstrated by site-directed mutagenesis that the carboxyl-terminal SSLKG sequence of cystinosin-LKG is an important sorting motif that is required for efficient targeting the protein to the plasma membrane, where it can mediate H+ coupled cystine transport.
View Article and Find Full Text PDFMetastable β-As2Te3 (R3̅m, a = 4.047 Å and c = 29.492 Å at 300 K) is isostructural to layered Bi2Te3 and is known for similarly displaying good thermoelectric properties around 400 K.
View Article and Find Full Text PDFNephropathic cystinosis is multisystemic progressive disorder caused by mutations of CTNS gene that encodes for the lysosomal cystine co-transporter cystinosin, and for a less abundant isoform termed cystinosin-LKG, which is expressed in not only lysosomes but also other cell compartments. To overcome the absence of high-quality antibodies against cystinosin, we have obtained a rabbit antiserum against cystinosin-LKG and have analyzed in human tissues the expression of the two known cystinosin isoforms by RT-PCR, and the expression of cystinosin-LKG by immunohistochemistry. In most tissues, CTNS-LKG represents 5-20 % of CTNS transcripts, with the exception of the testis that expresses both isoforms in equal proportions.
View Article and Find Full Text PDFCell cysteine (Cys) levels and/or the [Cys/CySS] redox potential have been shown to regulate mRNA levels of the CTNS gene, which encodes for a lysosomal cystine (CySS) carrier that is defective in cystinosis. To investigate the mechanisms involved CTNS mRNA regulation, different portions of the CTNS promotor were cloned into a luciferase vector and transfected in HK2 cells. A 1.
View Article and Find Full Text PDFThe cysteine/cystine (Cys/CySS) couple represents one of the major cell thiol/disulfide systems and is involved in the regulation of several metabolic pathways and the cell redox state. Nephropathic cystinosis (NC) is an autosomal recessive disease characterized by renal cellular dysfunction due to mutations in the CTNS gene, which encodes cystinosin, a CySS lysosomal transporter. To analyze the mechanisms involved in cell damage in NC, we have investigated the effects of CTNS gene overexpression or inhibition on cell thiol/disulfide systems and vice versa.
View Article and Find Full Text PDFSpermatogonial stem cells (SSC) ensure continuous production of mammalian male gametes. In rodents, the SSC are Asingle spermatogonia (As). Gene loss and gain-of-function mutations have provided some clues into SSC function, but genetic dissection of SSC physiology has not yet been accomplished.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
May 2008
Nephropathic cystinosis is a lysosomal disorder caused by functional defects of cystinosin, which mediates cystine efflux into the cytosol. The protein sequence contains at least two signals that target the protein to the lysosomal compartment, one of which is located at the carboxy terminal tail (GYDQL). We have isolated from a human kidney cDNA library a cystinosin isoform, which is generated by an alternative splicing of exon 12 that removes the GYDQL motif.
View Article and Find Full Text PDFNumb is an adaptor protein that is asymmetrically inherited at mitosis and controls the fate of sibling cells in different species. The role of m-Numb (mammalian Numb) as an important cell fate-determining factor has extensively been described mostly in neural tissues, particularly in progenitor cells, in the mouse. Biochemical and genetic analyses have shown that Numb acts as an inhibitor of the Notch signaling pathway, an evolutionarily conserved pathway involved in the control of cell proliferation, differentiation, and apoptosis.
View Article and Find Full Text PDFEstrogens have been postulated to exert a detrimental effect on spermatogenesis in vivo. Since mouse male germ cells express estrogen receptors, we have investigated whether molecular pathways are activated by estrogen stimulation of these cells. Our results demonstrate that estrogen receptor beta is expressed in mitotic and meiotic male germ cells as well as in the spermatogonia derived GC-1 cell line.
View Article and Find Full Text PDFIn mammals, spermatogenesis is maintained by spermatogonial stem cells (SSC). In their niche, SSC divide to self-maintain and to produce a transit-amplifying population that eventually enters the meiotic cycle to give rise to spermatozoa. The low number of SSC and the lack of specific markers hinder their isolation and enrichment.
View Article and Find Full Text PDF