Brugada Syndrome (BrS) is a rare inherited cardiac arrhythmia causing potentially fatal ventricular tachycardia or fibrillation, mainly occurring during rest or sleep in young individuals without heart structural issues. It increases the risk of sudden cardiac death, and its characteristic feature is an abnormal ST segment elevation on the ECG. While BrS has diverse genetic origins, a subset of cases can be conducted to mutations in the gene, which encodes for the Nav1.
View Article and Find Full Text PDFMissense variants of hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels cause variable phenotypes, ranging from mild generalized epilepsy to developmental and epileptic encephalopathy (DEE). Although variants of HCN1 are an established cause of DEE, those of HCN2 have been reported in generalized epilepsies. Here we describe the first case of DEE caused by the novel de novo heterozygous missense variant c.
View Article and Find Full Text PDFThe process of identifying and approving a new drug is a time-consuming and expensive procedure. One of the biggest issues to overcome is the risk of hepatotoxicity, which is one of the main reasons for drug withdrawal from the market. While animal models are the gold standard in preclinical drug testing, the translation of results into therapeutic intervention is often ambiguous due to interspecies differences in hepatic metabolism.
View Article and Find Full Text PDFThe development of high-throughput automated patch-clamp technology is a recent breakthrough in the field of Brugada syndrome research. Brugada syndrome is a heart disorder marked by abnormal electrocardiographic readings and an elevated risk of sudden cardiac death due to arrhythmias. Various experimental models, developed either in animals, cell lines, human tissue or computational simulation, play a crucial role in advancing our understanding of this condition, and developing effective treatments.
View Article and Find Full Text PDFThe role of T-type calcium channels is well established in excitable cells, where they preside over action potential generation, automaticity, and firing. They also contribute to intracellular calcium signaling, cell cycle progression, and cell fate; and, in this sense, they emerge as key regulators also in non-excitable cells. In particular, their expression may be considered a prognostic factor in cancer.
View Article and Find Full Text PDFTAK1 is a serine threonine kinase that mediates signal transduction induced by TGFβ and bone morphogenetic proteins, and controls a variety of cell functions by modulating the downstream activation of NF-kkB, JNK, and p38. Heterozygous variants in the coding MAP3K7 gene cause the cardiospondylocarpofacial syndrome, characterized by various abnormalities. Skin fibroblasts derived from a patient carrying the MAP3K7 c.
View Article and Find Full Text PDF