The synthesis and relaxometric properties of hetero-tripodal hydroxypyridonate-terephthalamide gadolinium (Gd(3+)) chelates with differing structural features for probing human serum albumin (HSA) interactions are reported. The Gd(3+) complexes are divided into two series. The first series (3-5) features a benzyl derivative connected to the hydroxypyridonate (HOPO) moiety.
View Article and Find Full Text PDFTwo novel Gd(III) complexes with functionalised polyaminocarboxylate macrocycles, 1,4,7-tris(carboxymethyl)-9,24-dioxo-14,19-dioxa-1,4,7,10,23- pentaazacyclododecane (L(1)) and 1,4,7-tris(carboxymethyl)-9,25-dioxo-14,17,20-trioxa-1,4,7,10,23- pentaazacyclotridecane (L(2)), were prepared in good yield. Their potential use as magnetic resonance imaging (MRI) contrast agents (CAs) was evaluated by investigating their relaxation behaviour as a function of pH, temperature and magnetic field strength. The 1/T(1) proton relaxivities at 20 MHz and 25 degrees C of GdL(1) (5.
View Article and Find Full Text PDFFive novel Gd(iii) complexes based on the structure of the heptadentate macrocyclic 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) ligand have been synthesized and their (1)H and (17)O NMR relaxometric properties investigated in detail. The complexes have been functionalised on the secondary nitrogen atom of the macrocyclic ring with different pendant groups for promoting their ability to interact non-covalently with human serum albumin (HSA). The analysis of the proton relaxivity, measured as a function of pH and magnetic field strength, have revealed that the three complexes bearing a poly(ethylene glycol)(PEG) chain possess a single coordinated water molecule, whereas the complexes functionalised with 1-[3-(2-hydroxyphenyl)]-propyl and 1-[3-(2-carboxyphenyloxy)]-propyl pendant groups have two inner sphere water molecules.
View Article and Find Full Text PDF