Publications by authors named "Serena Baratto"

Recessively inherited limb-girdle muscular dystrophy type 1, caused by mutations in the calpain 3 gene, is the most common limb-girdle muscular dystrophy worldwide. Recently, cases of autosomal dominant calpainopathy have been described. A man was referred to our neurological outpatient clinic at the age of 54 for persistent hyperCKemia (>1000 U/l) associated with muscle fatigue and myalgia.

View Article and Find Full Text PDF
Article Synopsis
  • Rigid spine syndrome is a rare condition in children marked by progressive scoliosis, neck and spine stiffness, muscle weakness, and breathing issues, primarily linked to genetic variations in the SELENON gene.
  • Recent research identified additional genetic variants in the HMGCS1 gene in five patients, suggesting it plays a role in this syndrome, despite it not being previously linked to any diseases.
  • Functional studies of the HMGCS1 variants showed altered protein stability and activity, and experiments in zebrafish indicated that these mutations severely impact development, but can be rescued by introducing healthy HMGCS1 mRNA.
View Article and Find Full Text PDF

Aim: The availability of disease-modifying therapies and newborn screening programs for spinal muscular atrophy (SMA) has generated an urgent need for reliable prognostic biomarkers to classify patients according to disease severity. We aim to identify cerebrospinal fluid (CSF) prognostic protein biomarkers in CSF samples of SMA patients collected at baseline (T0), and to describe proteomic profile changes and biological pathways influenced by nusinersen before the sixth nusinersen infusion (T302).

Methods: In this multicenter retrospective longitudinal study, we employed an untargeted liquid chromatography mass spectrometry (LC-MS)-based proteomic approach on CSF samples collected from 61 SMA patients treated with nusinersen (SMA1 n=19, SMA2 n=19, SMA3 n=23) at T0 at T302.

View Article and Find Full Text PDF

Biallelic mutations in the sorbitol dehydrogenase () gene have been identified as a genetic cause of autosomal recessive axonal Charcot-Marie-Tooth disease 2 (CMT2) and distal hereditary motor neuropathy (dHMN). We herein review the main phenotypes associated with mutations and report the case of a 16-year-old man who was referred to our outpatient clinic for a slowly worsening gait disorder with wasting and weakness of distal lower limbs musculature. Since creatine phosphokinase (CPK) values were persistently raised (1.

View Article and Find Full Text PDF

Caveolae constitute membrane microdomains where receptors and ion channels functionally interact. Caveolin-3 (cav-3) is the key structural component of muscular caveolae. Mutations in lead to caveolinopathies, which result in both muscular dystrophies and cardiac diseases.

View Article and Find Full Text PDF

DAG1 encodes for dystroglycan, a key component of the dystrophin-glycoprotein complex (DGC) with a pivotal role in skeletal muscle function and maintenance. Biallelic loss-of-function DAG1 variants cause severe muscular dystrophy and muscle-eye-brain disease. A possible contribution of DAG1 deficiency to milder muscular phenotypes has been suggested.

View Article and Find Full Text PDF
Article Synopsis
  • * The lack of a protein called Dystrophin leads to muscle damage and can cause heart and breathing problems.
  • * Researchers studied muscle samples from DMD patients to understand how muscle healing works and found that important muscle cells are not working well, which could help in developing new treatments.
View Article and Find Full Text PDF

Emery-Dreifuss muscular dystrophy (EDMD) is a rare disease characterized by early contractures, progressive muscle weakness, and cardiac abnormalities. Different subtypes of EDMD have been described, with the two most common forms represented by the X-linked EDMD1, caused by mutations in the gene encoding emerin, and the autosomal EDMD2, due to mutations in the gene encoding lamin A/C. A clear definition of the magnetic resonance imaging (MRI) pattern in the two forms, and especially in the rarer EDMD1, is still lacking, although a preferential involvement of the medial head of the gastrocnemius has been suggested in EDMD2.

View Article and Find Full Text PDF

Congenital titinopathies are an emerging group of a potentially severe form of congenital myopathies caused by biallelic mutations in titin, encoding the largest existing human protein involved in the formation and stability of sarcomeres. In this study we describe a patient with a congenital myopathy characterized by multiple contractures, a rigid spine, non progressive muscular weakness, and a novel homozygous TTN pathogenic variant in a metatranscript-only exon: the c.36400A > T, p.

View Article and Find Full Text PDF

Sarcoglycanopathies, limb-girdle muscular dystrophies (LGMD) caused by genetic loss-of-function of the membrane proteins sarcoglycans (SGs), are characterized by progressive degeneration of skeletal muscle. In these disorders, muscle necrosis is associated with immune-mediated damage, whose triggering and perpetuating molecular mechanisms are not fully elucidated yet. Extracellular adenosine triphosphate (eATP) seems to represent a crucial factor, with eATP activating purinergic receptors.

View Article and Find Full Text PDF

Introduction: Pyruvate dehydrogenase complex (PDH) deficiency (Online Mendelian Inheritance in Man # 312170) is a relatively common mitochondrial disorder, caused by mutations in the X-linked gene and presenting with a variable phenotypic spectrum, ranging from severe infantile encephalopathy to milder chronic neurological disorders.Isolated peripheral neuropathy as predominant clinical presentation is uncommon.

Results: We report on a patient, now 21 years old, presenting at the age of 2 years with recurrent symmetric weakness as first symptom of a PDH deficiency.

View Article and Find Full Text PDF

Early-onset myopathy, areflexia, respiratory distress, and dysphagia (EMARDD) is caused by homozygous or compound heterozygous mutation in the gene (OMIM #614399). Phenotypic spectrum of EMARDD is variable, ranging from severe infantile forms in which patients are ventilator-dependent and die in childhood, to milder chronic disorders with a more favorable course (mild variant, mvEMARDD). Here we describe a 22 years old boy, offspring of consanguineous parents, presenting a congenital myopathic phenotype since infancy with elbow contractures and scoliosis.

View Article and Find Full Text PDF

Aims: SPTLC1-related disorder is a late onset sensory-autonomic neuropathy associated with perturbed sphingolipid homeostasis which can be improved by supplementation with the serine palmitoyl-CoA transferase (SPT) substrate, l-serine. Recently, a juvenile form of motor neuron disease has been linked to SPTLC1 variants. Variants affecting the p.

View Article and Find Full Text PDF

Limb-girdle muscular dystrophy R3, a rare genetic disorder affecting the limb proximal muscles, is caused by mutations in the α-sarcoglycan gene (Sgca) and aggravated by an immune-mediated damage, finely modulated by the extracellular (e)ATP/purinoceptors axis. Currently, no specific drugs are available. The aim of this study was to evaluate the therapeutic effectiveness of a selective P2X7 purinoreceptor antagonist, A438079.

View Article and Find Full Text PDF

The role of muscle biopsy in the diagnostic workup of floppy infants is controversial. Muscle sampling is invasive, and often, results are not specific. The rapid expansion of genetic approach has made the muscle histopathology analysis less crucial.

View Article and Find Full Text PDF

Aim: Since the immune system plays a role in the pathogenesis of several muscular dystrophies, we aim to characterize several muscular inflammatory features in α- (LGMD R3) and γ-sarcoglycanopathies (LGMD R5).

Materials And Methods: We explored the expression of major histocompatibility complex class I molecules (MHCI), and we analyzed the composition of the immune infiltrates in muscle biopsies from 10 patients with LGMD R3 and 8 patients with LGMD R5, comparing the results to Duchenne muscular dystrophy patients (DMD).

Results: A consistent involvement of the immune response was observed in sarcoglycanopathies, although it was less evident than in DMD.

View Article and Find Full Text PDF

T lymphocytes play a central role in antigen-specific immune responses. They modulate the function of different immune cells both through a direct contact (receptor binding) and through the secretion of cytokines. At the same time, they are deeply involved in the direct killing of aberrant target cells.

View Article and Find Full Text PDF

In muscle ATP is primarily known for its function as an energy source and as a mediator of the "excitation-transcription" process, which guarantees muscle plasticity in response to environmental stimuli. When quickly released in massive concentrations in the extracellular space as in presence of muscle membrane damage, ATP acts as a damage-associated molecular pattern molecule (DAMP). In experimental murine models of muscular dystrophies characterized by membrane instability, blockade of eATP/P2X7 receptor (R) purinergic signaling delayed the progression of the dystrophic phenotype dampening the local inflammatory response and inducing Foxp3 T Regulatory lymphocytes.

View Article and Find Full Text PDF

Elastin microfibril interface-located proteins (EMILINs) are extracellular matrix glycoproteins implicated in elastogenesis and cell proliferation. Recently, a missense mutation in the EMILIN1 gene has been associated with autosomal dominant connective tissue disorder and motor-sensory neuropathy in a single family. We identified by whole exome sequencing a novel heterozygous EMILIN1 mutation c.

View Article and Find Full Text PDF

Tripartite motif-containing protein 32 () is a member of the TRIM ubiquitin E3 ligases which ubiquitinates different substrates in muscle including sarcomeric proteins. Mutations in are associated with Limb-Girdle Muscular Dystrophy 2H. In a 66 old woman with disto-proximal myopathy, we identified a novel homozygous mutation of gene c.

View Article and Find Full Text PDF

In muscular dystrophies, muscle membrane fragility results in a tissue-specific increase of danger-associated molecular pattern molecules (DAMPs) and infiltration of inflammatory cells. The DAMP extracellular ATP (eATP) released by dying myofibers steadily activates muscle and immune purinergic receptors exerting dual negative effects: a direct damage linked to altered intracellular calcium homeostasis in muscle cells and an indirect toxicity through the triggering of the immune response and inhibition of regulatory T cells. Accordingly, pharmacologic and genetic inhibition of eATP signaling improves the phenotype in models of chronic inflammatory diseases.

View Article and Find Full Text PDF

Mandibular hypoplasia, deafness, and progeroid features, with concomitant lipodystrophy, define a multisystem disorder named MDPL syndrome. MDPL has been associated with heterozygous mutations in POLD1 gene resulting in loss of DNA polymerase δ activity. In this study, we report clinical, genetic, and cellular studies of a 13-year-old Pakistani girl, presenting growth retardation, sensorineural deafness, altered distribution of subcutaneous adipose tissue, and insulin resistance.

View Article and Find Full Text PDF

We present a 13-year-old patient with persistent increase of serum Creatine Kinase (CK) and myalgia after exertion. Skeletal muscle biopsy showed marked reduction of dystrophin expression leading to genetic analysis of DMD gene by MLPA, which detected a single deletion of exon 78. To the best of our knowledge, DMD exon 78 deletion has never been described in literature and, according to prediction, it should lead to loss of reading frame in the dystrophin gene.

View Article and Find Full Text PDF

Caveolinopathies are a heterogeneous family of genetic pathologies arising from alterations of the caveolin-3 gene (CAV3), encoding for the isoform specifically constituting muscle caveolae. Here, by reprogramming peripheral blood mononuclear cells, we report the generation of induced pluripotent stem cells (iPSCs) from three patients carrying the ΔYTT deletion, T78K and W101C missense mutations in caveolin-3. iPSCs displayed normal karyotypes and all the features of pluripotent stem cells in terms of morphology, specific marker expression and ability to differentiate in vitro into the three germ layers.

View Article and Find Full Text PDF