Utilizing multicellular aggregates (spheroids) for in vitro cancer research offers a physiologically relevant model that closely mirrors the intricate tumor microenvironment, capturing properties of solid tumors such as cell interactions and drug resistance. In this research, we investigated the Peptide-Aggregation Induced Immunogenic Response (PAIIR), an innovative method employing engineered peptides we designed specifically to induce immunogenic cell death (ICD). We contrasted PAIIR-induced ICD with standard ICD and non-ICD inducer chemotherapeutics within the context of three-dimensional breast cancer tumor spheroids.
View Article and Find Full Text PDFAggregation of otherwise soluble proteins into amyloid structures is a hallmark of many disorders, such as Alzheimer's and Parkinson's disease. There is an increasing evidence that the small aggregations, instead of ordered fibrillar aggregates, are the main structures causing toxicity. However, the studies on the small aggregation phase are limited due to the variety of structures and the complexity of the physiological environment.
View Article and Find Full Text PDFImmunogenic cell death (ICD) arises when cells are under stress, and their membranes are damaged. They release damage-associated molecular patterns (DAMPs) that stimulate and drive the type and magnitude of the immune response. In the presence of an antigen, DAMPs ride the longevity and efficacy of antigen-specific immunity.
View Article and Find Full Text PDFDiscovery of peptide domains with unique intermolecular interactions is essential for engineering peptide-based materials. Rather than attempting a brute-force approach, we instead identify a previously unexplored strategy for discovery and study of intermolecular interactions: “co-assembly of oppositely charged peptide” (CoOP), a framework that “encourages” peptide assembly by mixing two oppositely charged hexapeptides. We used an integrated computational and experimental approach, probed the free energy of association and probability of amino acid contacts during co-assembly with atomic-resolution simulations, and correlated them to the physical properties of the aggregates.
View Article and Find Full Text PDFBackground: High fatality in ovarian cancer is attributed to metastasis, propagated by the release of multi-cellular aggregates/spheroids into the peritoneal cavity and their subsequent mesothelial invasion of peritoneal organs. Spheroids are therefore a common and clinically relevant in vitro model for ovarian cancer research. Spheroids in patients vary significantly in size and shape and display enhanced resistance to anti-cancer drugs compared to monolayers.
View Article and Find Full Text PDFInfrapatellar fat pad is a densely vascularized and innervated extrasynovial tissue that fills the anterior knee compartment. It plays a role in knee biomechanics as well as constitutes a source of stem cells for regeneration after knee injury. Infrapatellar fat pad-derived stem cells (IPFP-ASCs) possess enhanced and age-independent differentiation capacity as compared to other stem cells, which makes them a very promising candidate in stem cell-based regenerative therapy.
View Article and Find Full Text PDFPeptide nanomaterials have received a great deal of interest in drug-delivery applications due to their biodegradability, biocompatibility, suitability for large-scale synthesis, high drug-loading capacities, targeting ability, and ordered structural organization. The covalent conjugation of drugs to peptide backbones results in prolonged circulation time and improved stability of drugs. Therapeutic efficacy of gemcitabine, which is used for breast cancer treatment, is severely compromised due to its rapid plasma degradation.
View Article and Find Full Text PDFGuidance of neurite extension and establishment of neural connectivity hold great importance for neural tissue regeneration and neural conduit implants. Although bioactive-epitope functionalized synthetic or natural polymeric materials have been proposed for the induction of neural regeneration, chemical modifications of these materials for neural differentiation still remain a challenge due to the harsh conditions of chemical reactions, along with non-homogeneous surface modifications. In this study, a facile noncovalent functionalization method is proposed by exploiting host-guest interactions between an adamantane-conjugated laminin derived bioactive IKVAV epitope and electrospun cyclodextrin nanofibers (CDNFs) to fabricate implantable scaffolds for peripheral nerve regeneration.
View Article and Find Full Text PDFPeptide amphiphiles (PAs) self-assemble into supramolecular nanofiber gels that provide a suitable environment for encapsulation of both hydrophobic and hydrophilic molecules. The PA gels have significant advantages for controlled delivery applications due to their high capacity to retain water, biocompatibility, and biodegradability. In this study, we demonstrate injectable supramolecular PA nanofiber gels for drug delivery applications.
View Article and Find Full Text PDF