Publications by authors named "Serdechnova M"

A novel inhibitor-loaded bilayer hybrid system based on the LDH inner layer and MOF outer layer is designed on an aluminum alloy 2A12 surface to improve corrosion performance. The hybrid film system covers the inherent cavities and intercrystalline defects of the LDH film using the affinity between the LDH and the MOF compounds. The results demonstrate that the LDH-I precursor film is entirely covered by new Zn-based MOF microrods.

View Article and Find Full Text PDF

This work first describes the intercalation of corrosion inhibitors into layered double hydroxides LDH-OH/CO nanocontainers (parental LDH) obtained in situ on the surface of magnesium alloy AZ91 in the presence of a chelating agent. Vanadate, as a typical broad inhibitor for active metals, and oxalate, as an inhibitor suitable for magnesium, were selected as a first approach. The optimization of exchange conditions was performed, and the optimal parameters (ambient pressure and 95 °C) were selected.

View Article and Find Full Text PDF

In this work, the porosity of plasma electrolytic oxidation (PEO)-based coatings on Al- and Mg-based substrates was studied by two imaging techniques-namely, SEM and computer microtomography. Two approaches for porosity determination were chosen; relatively simple and fast SEM surface and cross-sectional imaging was compared with X-ray micro computed tomography (microCT) rendering. Differences between 2D and 3D porosity were demonstrated and explained.

View Article and Find Full Text PDF

Effective protective coatings are an essential component of lightweight engineering materials in a large variety of applications as they ensure structural integrity of the base material throughout its whole service life. Layered double hydroxides (LDHs) loaded with corrosion inhibitors depict a promising approach to realize an active corrosion protection for aluminum and magnesium. In this work, we employed a combination of density functional theory and molecular dynamics simulations to gain a deeper understanding of the influence of intercalated water content on the structure, the stability, and the anion-exchange capacity of four different LDH systems containing either nitrate, carbonate, or oxalate as potential corrosion inhibiting agents or chloride as a corrosion initiator.

View Article and Find Full Text PDF

A promising double-ligand strategy for the delivery of active corrosion inhibitors by a Zn(II)-based metal-organic framework (Zn-MOF) is developed. Zn-MOF compounds were synthesized by a facile one-pot solvothermal method and characterized. The Zn-MOF is based on the corrosion inhibitor benzotriazole (BTA) and 2,5-furandicarboxylic acid (HFDA) ligand, which is a promising renewable building block alternative to terephthalic or isophthalic acid.

View Article and Find Full Text PDF

Kinetic parameters for three anion exchange reactions - Zn-LDH-NO→ Zn-LDH-Cl, Zn-LDH-NO→ Zn-LDH-SO and Zn-LDH-NO→ Zn-LDH-VO- were obtained by in situ synchrotron study. The first and the second ones are two-stage reactions; the first stage is characterized by the two-dimensional diffusion-controlled reaction following deceleratory nucleation and the second stage is a one-dimensional diffusion-controlled reaction also with a decelerator nucleation effect. In the case of exchange NO→ Cl host anions are completely released, while in the case of NO→ SO the reaction ends without complete release of nitrate anions.

View Article and Find Full Text PDF

The principal possibility to grow layered double hydroxide (LDH) at ambient pressure on plasma electrolytic oxidation (PEO) treated magnesium alloy AZ91 in the presence of chelating agents is demonstrated for the first time. It avoids hydrothermal autoclave conditions, which strongly limit wide industrial application of such coating systems, and the presence of carbonate ions in the electrolyte, which lead to the formation of "passive" non-functionalizable LDH. A combination of chelating agents (sodium diethylenetriamine-pentaacetate (DTPA) and salicylate) were introduced to the treatment solution.

View Article and Find Full Text PDF

In this work we demonstrate the role of grain boundaries and domain walls in the local transport properties of n- and p-doped bismuth ferrites, including the influence of these singularities on the space charge imbalance of the energy band structure. This is mainly due to the charge accumulation at domain walls, which is recognized as the main mechanism responsible for the electrical conductivity in polar thin films and single crystals, while there is an obvious gap in the understanding of the precise mechanism of conductivity in ferroelectric ceramics. The conductivity of the BiCaFeTiO (x = 0, 0.

View Article and Find Full Text PDF

Nanocrystalline LaAMnO (where A is Li, Na, K) powders were synthesized by a combustion method. The powders used to prepare nanoceramics were fabricated via a high-temperature sintering method. The structure and morphology of all compounds were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

In the frame of the current work, it was shown that plasma electrolytic oxidation (PEO) treatment can be applied on top of phosphoric sulfuric acid (PSA) anodized aluminum alloy AA2024. Being hard and well-adherent to the substrate, PEO layers improve both corrosion and wear resistance of the material. To facilitate PEO formation and achieve a dense layer, the systematic analysis of PEO layer formation on the preliminary PSA anodized layer was performed in this work.

View Article and Find Full Text PDF

In situ formation of layered double hydroxides (LDH) on metallic surfaces has recently been considered a promising approach for protective conversion surface treatments for Al and Mg alloys. In the case of Mg-based substrates, the formation of LDH on the metal surface is normally performed in autoclave at high temperature (between 130 and 170 °C) and elevated pressure conditions. This hampers the industrial application of MgAl LDH to magnesium substrates.

View Article and Find Full Text PDF

The photochemical degradation of 2-mercaptobenzothiazole (MBT) and 1,2,3-benzotriazole (BTA) inhibitors was studied in the present work in aqueous and in organic solutions. The extent of photodegradation was assessed by UV-Vis spectroscopy and the main reaction products were identified by tandem electrospray ionization mass spectrometry (ESI-MS/MS). The analysis of degradation products upon UV irradiation revealed the predominant formation of dimeric compounds from MBT and oligomeric structures from BTA, which were further converted into aniline.

View Article and Find Full Text PDF