Publications by authors named "Serdar Tort"

With the developing manufacturing technologies, the use of 3D printers in microneedle production is becoming widespread. Hydrogel-forming microneedles (HFMs), a variant of microneedles, demonstrate distinctive features such as a high loading capacity and controlled drug release. In this study, the conical microneedle master molds with approximately 500 μm needle height and 250 μm base diameter were created using a Stereolithography (SLA) 3D printer and were utilized to fabricate composite HFMs containing diclofenac sodium.

View Article and Find Full Text PDF

The electrospinning method involves the production of different drug delivery systems using various polymers. The production of proliposomes with electrospinning provides the hybridization of two novel drug delivery systems. Retinoic acid, also known as all-trans retinoic acid (ATRA), is a common and effective drug for acne therapy.

View Article and Find Full Text PDF

The aim of this study was formulating a new-generation antibacterial dressing in a form of polymer-based hybrid nanofiber-nanoparticles, effective on Gram-negative and Gram-positive bacteria using silver sulfadiazine (SSD), an FDA-approved topical antibiotic. In this study, SSD nanoparticles were prepared with chitosan for taking the advantage of antibacterial and wound healing properties. Chitosan nanoparticles of SSD were prepared by using tripolyphosphate (TPP) or sulfobutylether-β-cyclodextrin (SBE-β-CD) as crosslinkers via ionic gelation method and then loaded to PVP-K30 and PVP-K90 nanofibers to obtain polymer-based nanofiber-nanoparticles.

View Article and Find Full Text PDF

Objectives: Three-dimensional printing (3DP) has gained importance worldwide recently as a novel drug manufacturing technology. 3DP technologies are suitable in the pharmaceutical field because of having the potential in personalized medicine. The aim of this review is to present an overview of the use of 3DP technologies in pharmaceutical area, their working principles and critical process parameters.

View Article and Find Full Text PDF

Aim: The objective of this study was to develop dermal nanosuspension (NS) based gel formulation of etodolac (ETD).

Methods: Etodolac nanosuspension (ETD-NS) was prepared by wet milling method and dispersed in hydroxypropyl methylcellulose (NS-HPMC) or hydroxyethyl cellulose (NS-HEC) gels. Rheologic and mechanical properties were investigated.

View Article and Find Full Text PDF

Fused deposition modeling (FDM)-3D printing enables the manufacturing of dosage forms with personalized doses and controllable release profiles. Parkinson's disease is a neurodegenerative disorder that causes motor complications. In the treatment of the disease, the nonergot dopamine receptor agonist pramipexole is used in gradually increasing doses depending on patient's needs.

View Article and Find Full Text PDF

Aim: Microneedles (MNs) create micropunctures and deliver drugs or nutrients deep into skin layer. We demonstrated that MNs, coated with electrosprayed nanoparticles loaded with functional molecules, are useful for transdermal delivery.

Methods: Electrospraying was utilised to generate drug-loaded nanoparticles and to create uniform coating on MNs.

View Article and Find Full Text PDF

The objective of this study was to develop resveratrol nanocrystals to solve low water solubility issues of resveratrol and adsorb them to the polycaprolactone nanofibers. Nanocrystals were prepared by microfluidization. Particle size, polydispersity index and zeta potential values were evaluated as dependent variables.

View Article and Find Full Text PDF

To develop and characterize innovative vaginal dosage forms for the treatment of bacterial vaginosis (BV). This study is the first comparative evaluation of the metronidazole (MET)-loaded polyvinylpyrrolidone (PVP) nanofiber formulations on BV treatment. Vaginal nanofibers are one of the potential innovative dosage forms for BV treatment because of their flexible, mucoadhesive, and easy application in vaginal application which can be applied by the mucosal route.

View Article and Find Full Text PDF

Floating gastro-retentive delivery systems can prolong the gastric residence providing sustained drug release. In this study, we report on self-inflating effervescence-based electrospun nanofiber membranes embedding polyethylene oxide/sodium bicarbonate cast films. In this system, sodium bicarbonate results in an effervescence effect by creating carbon dioxide gas upon contacting an acidic gastric fluid, with the resulting gas bubbles being entrapped within the swollen network of nanofibers.

View Article and Find Full Text PDF

Electrospinning process has gained importance in the production of wound dressings in recent years. The wound dressings prepared by electrospinning method provide many advantages over conventional wound dressings. The aim of this study was to assess the histological, biochemical, and immunohistochemical evaluation of collagen/doxycycline loaded nanofiber wound dressing in both acute and chronic wound healing.

View Article and Find Full Text PDF

Purpose: Fabrication of immediate release (IR) tablet formulations with rapid release profile via fused deposition modeling 3D printing (FDM 3DP) is a challenge. The aims of this study were to prepare IR tablets with different dissolution profiles and to increase their in vitro dissolution rates by making physical modifications on them. Pramipexole was used as the model low-dose drug.

View Article and Find Full Text PDF

Potential usage of biodegradable and biocompatible polymeric nanofibers is the most attention grabbing topic for the drug delivery system. In order to fabricate ultrafine fibers, electrospinning, one of the well-known techniques, has been extensively studied in the literature. In the present study, the objective is to achieve the optimum blend of hydrophobic and hydrophilic polymers to be used as a drug delivery vehicle and also to obtain the optimum amount of doxycycline (DOXH) to reach the optimum release.

View Article and Find Full Text PDF

Gingivitis is a common and mild form of periodontal disease and can be described as a limited inflammation of the gingiva. This study aims to develop and characterize rapid releasing mucoadhesive fibers containing ornidazole with electrospinning process for the treatment of gingivitis. Polyvinylpyrrolidone (PVP) was chosen as a polymer and used at different concentrations of 10%, 12.

View Article and Find Full Text PDF

Nanofiber wound dressings have great potential for both acute and chronic wound healing. The aim of this study is to develop a wound dressing by the electrospinning method and to determine its in vitro characteristics. The viscosity and the surface tension values of the polymer solutions used in the electrospinning were measured and their suitability for electrospinning was evaluated.

View Article and Find Full Text PDF

Oral mucositis is a painful inflammation of mucous membranes commonly after chemotherapy or radiotherapy. The aim of this study was to develop mucoadhesive nanofibers containing glutamine via electrospinning and to characterize them for the treatment of oral mucositis. Different mucoadhesive polymers were tried for preparing nanofibers and sodium alginate nanofibers were chosen after the characterization studies.

View Article and Find Full Text PDF