Optical injection and detection of charge currents is an alternative to conventional transport and photoemission measurements, avoiding the necessity of invasive contact that may disturb the system being examined. This is a particular concern for analyzing the surface states of topological insulators. In this work one- and two-color sources of photocurrents are isolated and examined in epitaxial thin films of BiSe.
View Article and Find Full Text PDFLow-energy collective electronic excitations exhibiting sound-like linear dispersion have been intensively studied both experimentally and theoretically for a long time. However, coherent acoustic plasmon modes appearing in time-domain measurements are rarely observed due to Landau damping by the single-particle continua. Here we report on the observation of coherent acoustic Dirac plasmon (CADP) modes excited in indirectly (electrostatically) opposite-surface coupled films of the topological insulator BiSe.
View Article and Find Full Text PDFTransient reflectivity (TR) measured at laser photon energy 1.51 eV from the indirectly intersurface-coupled topological insulator Bi2-x Mn x Se3 films (12 nm thick) revealed a strong dependence of the rise-time and initial decay-time constants on photoexcited carrier density and Mn content. In undoped samples (x = 0), these time constants are exclusively governed by electron-electron and electron-phonon scattering, respectively, whereas in films with x = 0.
View Article and Find Full Text PDFWe report on a >100-fold enhancement of Raman responses from Bi2Se3 thin films if laser photon energy switches from 2.33 eV (532 nm) to 1.58 eV (785 nm), which is due to direct optical coupling to Dirac surface states (SS) at the resonance energy of ∼1.
View Article and Find Full Text PDF