Prevention of COVID-19 on a global scale will require the continued development of high-volume, low-cost platforms for the manufacturing of vaccines to supply ongoing demand. Vaccine candidates based on recombinant protein subunits remain important because they can be manufactured at low costs in existing large-scale production facilities that use microbial hosts like Komagataella phaffii (Pichia pastoris). Here, we report an improved and scalable manufacturing approach for the SARS-CoV-2 spike protein receptor-binding domain (RBD); this protein is a key antigen for several reported vaccine candidates.
View Article and Find Full Text PDFPrevention of COVID-19 on a global scale will require the continued development of high-volume, low-cost platforms for the manufacturing of vaccines to supply on-going demand. Vaccine candidates based on recombinant protein subunits remain important because they can be manufactured at low costs in existing large-scale production facilities that use microbial hosts like ( ). Here, we report an improved and scalable manufacturing approach for the SARS-CoV-2 spike protein receptor binding domain (RBD); this protein is a key antigen for several reported vaccine candidates.
View Article and Find Full Text PDF