Several prior studies, including those from this laboratory, have suggested that vestibulo-ocular reflex (VOR) adaptation and compensation are two neurologically related mechanisms. We therefore hypothesised that adaptation would be affected by compensation, depending on the amount of overlap between these two mechanisms. To better understand this overlap, we examined the effect of gain-increase (gain = eye velocity/head velocity) adaptation training on the VOR in compensated mice since both adaptation and compensation mechanisms are presumably driving the gain to increase.
View Article and Find Full Text PDFAscorbate potentiates the response of nicotinic-acetylcholine-receptors containing α9 and α10 subunits found predominantly in the efferent systems of the inner ear, such as the efferent vestibular system (EVS). Prior mouse studies have shown that an attenuated EVS results in reduced vestibulo-ocular reflex (VOR) gain (=eye_velocity/head_velocity) plasticity in intact (VOR adaptation) and surgically-lesioned (VOR compensation) mice. We sought to determine whether ascorbate-treatment could improve VOR recovery after vestibular organ injury, possibly through potentiation of the EVS pathway.
View Article and Find Full Text PDFThe role of the otoliths in mammals in the angular vestibuloocular reflex (VOR) has been difficult to determine because there is no surgical technique that can reliably ablate them without damaging the semicircular canals. The Otopetrin1 (Otop1) mouse lacks functioning otoliths because of failure to develop otoconia but seems to have otherwise normal peripheral anatomy and neural circuitry. By using these animals we sought to determine the role of the otoliths in angular VOR baseline function and adaptation.
View Article and Find Full Text PDFThe role of the otoliths in mammals in the normal angular vestibuloocular reflex (VOR) was characterized in an accompanying study based on the Otopetrin1 (Otop1) mouse, which lacks functioning otoliths because of failure to develop otoconia but seems to have otherwise normal peripheral anatomy and neural circuitry. That study showed that otoliths do not contribute to the normal horizontal (rotation about Earth-vertical axis parallel to dorso-ventral axis) and vertical (rotation about Earth-vertical axis parallel to interaural axis) angular VOR but do affect gravity context-specific VOR adaptation. By using these animals, we sought to determine whether the otoliths play a role in the angular VOR after unilateral labyrinthectomy when the total canal signal is reduced.
View Article and Find Full Text PDFThe vestibulo-ocular reflex (VOR) is the main vision-stabilising system during rapid head movements in humans. A visual-vestibular mismatch stimulus can be used to train or adapt the VOR response because it induces a retinal image slip error signal that drives VOR motor learning. The training context has been shown to affect VOR adaptation.
View Article and Find Full Text PDFJ Assoc Res Otolaryngol
February 2018
The vestibulo-ocular reflex (VOR) is the main retinal image stabilising mechanism during rapid head movement. When the VOR does not stabilise the world or target image on the retina, retinal image slip occurs generating an error signal that drives the VOR response to increase or decrease until image slip is minimised, i.e.
View Article and Find Full Text PDFJ Assoc Res Otolaryngol
December 2017
Core body temperature has been shown to affect vestibular end-organ and nerve afferents so that their resting discharge rate and sensitivity increase with temperature. Our aim was to determine whether these changes observed in extracellular nerve recordings of anaesthetized C57BL/6 mice corresponded to changes in the behavioural vestibulo-ocular reflex (VOR) of alert mice. The VOR drives eye rotations to keep images stable on the retina during head movements.
View Article and Find Full Text PDFThe α9-nicotinic acetylcholine receptor (α9-nAChR) subunit is expressed in the vestibular and auditory periphery, and its loss of function could compromise peripheral input from the predominantly cholinergic efferent vestibular system (EVS). A recent study has shown that α9-nAChRs play an important role in short-term vestibulo-ocular reflex (VOR) adaptation. We hypothesize that α9-nAChRs could also be important for other forms of vestibular plasticity, such as that needed for VOR recovery after vestibular organ injury.
View Article and Find Full Text PDFPrevailing evidence indicates a relatively late life decline in human vestibulo-ocular reflex (VOR) function. Although mice are commonly used in mechanistic studies of vestibular function, it remains unclear whether aging produces a corresponding decline in VOR function in mice. We sought to determine how the baseline VOR and its short-term adaptation were affected by aging.
View Article and Find Full Text PDFKey Points: The output of human motoneurone pools decreases with fatiguing exercise, but the mechanisms involved are uncertain. We explored depression of recurrent motoneurone discharges (F-waves) after sustained maximal voluntary contractions (MVCs). MVC depressed the size and frequency of F-waves in a hand muscle but a submaximal contraction (at 50% MVC) did not.
View Article and Find Full Text PDFAlthough anatomically well described, the functional role of the mammalian efferent vestibular system (EVS) remains unclear. Unlike in fish and reptiles, the mammalian EVS does not seem to play a role in modulation of primary afferent activity in anticipation of active head movements. However, it could play a role in modulating long-term mechanisms requiring plasticity such as vestibular adaptation.
View Article and Find Full Text PDFOne commonly observed phenomenon of vestibulo-ocular reflex (VOR) adaptation is a frequency-selective change in gain (eye velocity/head velocity) and phase (relative timing between the vestibular stimulus and response) based on the frequency content of the adaptation training stimulus. The neural mechanism behind this type of adaptation is not clear. Our aim was to determine whether there were other parameter-selective effects on VOR adaptation, specifically velocity-selective and acceleration-selective changes in the horizontal VOR gain and phase.
View Article and Find Full Text PDFDespite maximal voluntary effort, the output of human motoneurone pools diminishes during fatigue. To assess motoneurone behaviour, we measured recurrent discharges evoked antidromically by supramaximal nerve stimulation after isometric maximal voluntary contractions (MVCs).They were measured as F-waves in the electromyographic activity (EMG).
View Article and Find Full Text PDFJ Appl Physiol (1985)
September 2011
Muscle pain has widespread effects on motor performance, but the effect of pain on voluntary activation, which is the level of neural drive to contracting muscle, is not known. To determine whether induced muscle pain reduces voluntary activation during maximal voluntary contractions, voluntary activation of elbow flexors was assessed with both motor-point stimulation and transcranial magnetic stimulation over the motor cortex. In addition, we performed a psychophysical experiment to investigate the effect of induced muscle pain across a wide range of submaximal efforts (5-75% maximum).
View Article and Find Full Text PDFMotoneurone excitability is rapidly and profoundly reduced during a sustained maximal voluntary contraction (MVC) when tested in the transient silent period which follows transcranial magnetic stimulation (TMS) of the motor cortex. One possible cause of this reduction in excitability is a fatigue-induced withdrawal of excitatory input to motoneurones from muscle spindle afferents. We aimed to test if muscle spindle input produced by tendon vibration would ameliorate suppression of the cervicomedullary motor-evoked potential (CMEP) in the silent period during a sustained MVC.
View Article and Find Full Text PDFElectrical stimulation of the Achilles tendon (TES) produced strong reflex depression (duration>250 ms) of a small background contraction in both heads of gastrocnemius (GA) via large diameter electrodes localized to the tendon. The inhibitory responses were produced without electrical (M wave) or mechanical (muscle twitch) signs of direct muscle stimulation. In this study, the contribution of presynaptic and postsynaptic mechanisms to the depression was investigated by studying conditioning effects of tendon afferent stimulation on the mechanical tendon reflex (TR) and magnetic motor evoked potential (MEP).
View Article and Find Full Text PDFElectrical stimulation of the Achilles tendon produced strong reflex inhibition of the ongoing voluntary EMG activity in the two heads of the gastrocnemius (GA) muscle in all tested subjects. The inhibition was seen clearly in both averaged and single sweep surface EMG records. The inhibitory response was produced without electrical (M wave) or mechanical, (muscle twitch) signs of direct muscle stimulation.
View Article and Find Full Text PDFJ Neurophysiol
September 2007
Muscle cramp was induced in one head of the gastrocnemius muscle (GA) in eight of thirteen subjects using maximum voluntary contraction when the muscle was in the shortened position. Cramp in GA was painful, involuntary, and localized. Induction of cramp was indicated by the presence of electromyographic (EMG) activity in one head of GA while the other head remained silent.
View Article and Find Full Text PDF