Thermoplastic polyurethane (TPU) doped with multi-walled carbon nanotubes (MWCNTs) at 1, 3, 5, and 7 wt% has been studied. The effect of MWCNTs on thermal, viscoelastic, and electric properties in the TPU matrix was characterized by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and by impedance spectroscopy. The results show that the thermal, electrical, and viscoelastic properties, such as the glass transition temperature, shifted towards high temperatures.
View Article and Find Full Text PDFThe impacts on the morphological, electrical and hardness properties of thermoplastic polyurethane (TPU) plates using multi-walled carbon nanotubes (MWCNTs) as reinforcing fillers have been investigated, using MWCNT loadings between 1 and 7 wt%. Plates of the TPU/MWCNT nanocomposites were fabricated by compression molding from extruded pellets. An X-ray diffraction analysis showed that the incorporation of MWCNTs into the TPU polymer matrix increases the ordered range of the soft and hard segments.
View Article and Find Full Text PDFIn this study, the properties of a polyolefin blend matrix (PP-HDPE) were evaluated and modified through the addition of raw coir coconut fibers-(CCF). PP-HDPE-CCF biocomposites were prepared using melt blending processes with CCF loadings up to 30% (/). CCF addition generates an increase of the tensile and flexural modulus up to 78% and 99% compared to PP-HDPE blend.
View Article and Find Full Text PDF