Background: Immune-checkpoint inhibitors (ICIs) have showed unprecedent efficacy in the treatment of patients with advanced non-small cell lung cancer (NSCLC). However, not all patients manifest clinical benefit due to the lack of reliable predictive biomarkers. We showed preliminary data on the predictive role of the combination of radiomics and plasma extracellular vesicle (EV) PD-L1 to predict durable response to ICIs.
View Article and Find Full Text PDFBackground: Preoperative symptom severity in cervical spondylotic myelopathy (CSM) can be variable. Radiomic signatures could provide an imaging biomarker for symptom severity in CSM. This study utilizes radiomic signatures of T1-weighted and T2-weighted magnetic resonance imaging images to correlate with preoperative symptom severity based on modified Japanese Orthopaedic Association (mJOA) scores for patients with CSM.
View Article and Find Full Text PDFPurpose: Although glioblastoma (GBM) is the most common primary brain malignancy, few tools exist to pre-operatively risk-stratify patients by overall survival (OS) or common genetic alterations. We developed an MRI-based radiomics model to identify patients with EGFR amplification, MGMT methylation, GBM subtype, and OS greater than 12 months.
Methods: We retrospectively identified 235 patients with pathologically confirmed GBMs from the Cancer Genome Atlas (88; TCGA) and MD Anderson Cancer Center (147; MDACC).
Accurate skull stripping facilitates following neuro-image analysis. For computer-aided methods, the presence of brain skull in structural magnetic resonance imaging (MRI) impacts brain tissue identification, which could result in serious misjudgments, specifically for patients with brain tumors. Though there are several existing works on skull stripping in literature, most of them either focus on healthy brain MRIs or only apply for a single image modality.
View Article and Find Full Text PDF