As crop productivity is greatly influenced by weather conditions, many attempts have been made to estimate crop yields using meteorological data and have achieved great progress with the development of machine learning. However, most yield prediction models are developed based on observational data, and the utilization of climate model output in yield prediction has been addressed in very few studies. In this study, we estimate rice yields in South Korea using the meteorological variables provided by ERA5 reanalysis data (ERA-O) and its dynamically downscaled data (ERA-DS).
View Article and Find Full Text PDF