Background: Intensive care units (ICUs) harbor the sickest patients with the utmost needs of medical care. Discharge from ICU needs to consider the reason for admission and stability after ICU care. Organ dysfunction or instability after ICU discharge constitute potentially life-threatening situations for patients.
View Article and Find Full Text PDFBuilding accurate rainfall-runoff models is an integral part of hydrological science and practice. The variety of modeling goals and applications have led to a large suite of evaluation metrics for these models. Yet, hydrologists still put considerable trust into visual judgment, although it is unclear whether such judgment agrees or disagrees with existing quantitative metrics.
View Article and Find Full Text PDFBackground: Transfusion of packed red blood cells (pRBCs) is still associated with risks. This study aims to determine whether renal function deterioration in the context of individual transfusions in individual patients can be predicted using machine learning. Recipient and donor characteristics linked to increased risk are identified.
View Article and Find Full Text PDFA central problem in drug discovery is to identify the interactions between drug-like compounds and protein targets. Over the past few decades, various quantitative structure-activity relationship (QSAR) and proteo-chemometric (PCM) approaches have been developed to model and predict these interactions. While QSAR approaches solely utilize representations of the drug compound, PCM methods incorporate both representations of the protein target and the drug compound, enabling them to achieve above-chance predictive accuracy on previously unseen protein targets.
View Article and Find Full Text PDFThe field of bioimage analysis is currently impacted by a profound transformation, driven by the advancements in imaging technologies and artificial intelligence. The emergence of multi-modal AI systems could allow extracting and utilizing knowledge from bioimaging databases based on information from other data modalities. We leverage the multi-modal contrastive learning paradigm, which enables the embedding of both bioimages and chemical structures into a unified space by means of bioimage and molecular structure encoders.
View Article and Find Full Text PDFIEEE Trans Image Process
October 2023
The synthesis of high-resolution remote sensing images based on text descriptions has great potential in many practical application scenarios. Although deep neural networks have achieved great success in many important remote sensing tasks, generating realistic remote sensing images from text descriptions is still very difficult. To address this challenge, we propose a novel text-to-image modern Hopfield network (Txt2Img-MHN).
View Article and Find Full Text PDFThe COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the "Billion molecules against COVID-19 challenge", to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors.
View Article and Find Full Text PDFAims: Patient admission is a decision relying on sparsely available data. This study aims to provide prediction models for discharge versus admission for ward observation or intensive care, and 30 day-mortality for patients triaged with the Manchester Triage System.
Methods: This is a single-centre, observational, retrospective cohort study from data within ten minutes of patient presentation at the interdisciplinary emergency department of the Kepler University Hospital, Linz, Austria.
Machine learning (ML) is a key technology for accurate prediction of antibody-antigen binding. Two orthogonal problems hinder the application of ML to antibody-specificity prediction and the benchmarking thereof: the lack of a unified ML formalization of immunological antibody-specificity prediction problems and the unavailability of large-scale synthetic datasets to benchmark real-world relevant ML methods and dataset design. Here we developed the Absolut! software suite that enables parameter-based unconstrained generation of synthetic lattice-based three-dimensional antibody-antigen-binding structures with ground-truth access to conformational paratope, epitope and affinity.
View Article and Find Full Text PDFElectronic health records (EHRs) have been successfully used in data science and machine learning projects. However, most of these data are collected for clinical use rather than for retrospective analysis. This means that researchers typically face many different issues when attempting to access and prepare the data for secondary use.
View Article and Find Full Text PDFGenerative machine learning (ML) has been postulated to become a major driver in the computational design of antigen-specific monoclonal antibodies (mAb). However, efforts to confirm this hypothesis have been hindered by the infeasibility of testing arbitrarily large numbers of antibody sequences for their most critical design parameters: paratope, epitope, affinity, and developability. To address this challenge, we leveraged a lattice-based antibody-antigen binding simulation framework, which incorporates a wide range of physiological antibody-binding parameters.
View Article and Find Full Text PDFMany previous studies claim to have developed machine learning models that diagnose COVID-19 from blood tests. However, we hypothesize that changes in the underlying distribution of the data, so called domain shifts, affect the predictive performance and reliability and are a reason for the failure of such machine learning models in clinical application. Domain shifts can be caused, e.
View Article and Find Full Text PDFFinding synthesis routes for molecules of interest is essential in the discovery of new drugs and materials. To find such routes, computer-assisted synthesis planning (CASP) methods are employed, which rely on a single-step model of chemical reactivity. In this study, we introduce a template-based single-step retrosynthesis model based on Modern Hopfield Networks, which learn an encoding of both molecules and reaction templates in order to predict the relevance of templates for a given molecule.
View Article and Find Full Text PDFObjectives: The ability to predict in-hospital mortality from data available at hospital admission would identify patients at risk and thereby assist hospital-wide patient safety initiatives. Our aim was to use modern machine learning tools to predict in-hospital mortality from standardized data sets available at hospital admission.
Methods: This was a retrospective, observational study in 3 adult tertiary care hospitals in Western Australia between January 2008 and June 2017.
Drug-induced liver injury (DILI) is a common reason for the withdrawal of a drug from the market. Early assessment of DILI risk is an essential part of drug development, but it is rendered challenging prior to clinical trials by the complex factors that give rise to liver damage. Artificial intelligence (AI) approaches, particularly those building on machine learning, range from random forests to more recent techniques such as deep learning, and provide tools that can analyze chemical compounds and accurately predict some of their properties based purely on their structure.
View Article and Find Full Text PDFRecent advances in artificial intelligence, particularly in the field of deep learning, have enabled researchers to create compelling algorithms for medical image analysis. Histological slides of basal cell carcinomas (BCCs), the most frequent skin tumor, are accessed by pathologists on a daily basis and are therefore well suited for automated prescreening by neural networks for the identification of cancerous regions and swift tumor classification.In this proof-of-concept study, we implemented an accurate and intuitively interpretable artificial neural network (ANN) for the detection of BCCs in histological whole-slide images (WSIs).
View Article and Find Full Text PDFBackground: The ability to predict transfusions arising during hospital admission might enable economized blood supply management and might furthermore increase patient safety by ensuring a sufficient stock of red blood cells (RBCs) for a specific patient. We therefore investigated the precision of four different machine learning-based prediction algorithms to predict transfusion, massive transfusion, and the number of transfusions in patients admitted to a hospital.
Study Design And Methods: This was a retrospective, observational study in three adult tertiary care hospitals in Western Australia between January 2008 and June 2017.
There has been a wave of generative models for molecules triggered by advances in the field of Deep Learning. These generative models are often used to optimize chemical compounds towards particular properties or a desired biological activity. The evaluation of generative models remains challenging and suggested performance metrics or scoring functions often do not cover all relevant aspects of drug design projects.
View Article and Find Full Text PDFPredicting the outcome of biological assays based on high-throughput imaging data is a highly promising task in drug discovery since it can tremendously increase hit rates and suggest novel chemical scaffolds. However, end-to-end learning with convolutional neural networks (CNNs) has not been assessed for the task biological assay prediction despite the success of these networks at visual recognition. We compared several CNNs trained directly on high-throughput imaging data to a) CNNs trained on cell-centric crops and to b) the current state-of-the-art: fully connected networks trained on precalculated morphological cell features.
View Article and Find Full Text PDFDeep learning is currently the most successful machine learning technique in a wide range of application areas and has recently been applied successfully in drug discovery research to predict potential drug targets and to screen for active molecules. However, due to (1) the lack of large-scale studies, (2) the compound series bias that is characteristic of drug discovery datasets and (3) the hyperparameter selection bias that comes with the high number of potential deep learning architectures, it remains unclear whether deep learning can indeed outperform existing computational methods in drug discovery tasks. We therefore assessed the performance of several deep learning methods on a large-scale drug discovery dataset and compared the results with those of other machine learning and target prediction methods.
View Article and Find Full Text PDFThe new wave of successful generative models in machine learning has increased the interest in deep learning driven de novo drug design. However, method comparison is difficult because of various flaws of the currently employed evaluation metrics. We propose an evaluation metric for generative models called Fréchet ChemNet distance (FCD).
View Article and Find Full Text PDFIn both academia and the pharmaceutical industry, large-scale assays for drug discovery are expensive and often impractical, particularly for the increasingly important physiologically relevant model systems that require primary cells, organoids, whole organisms, or expensive or rare reagents. We hypothesized that data from a single high-throughput imaging assay can be repurposed to predict the biological activity of compounds in other assays, even those targeting alternate pathways or biological processes. Indeed, quantitative information extracted from a three-channel microscopy-based screen for glucocorticoid receptor translocation was able to predict assay-specific biological activity in two ongoing drug discovery projects.
View Article and Find Full Text PDF