Publications by authors named "Sepp A"

The bioavailability of a monoclonal antibody (mAb) or another therapeutic protein after subcutaneous (SC) dosing is challenging to predict from first principles, even if the impact of injection site physiology and drug properties on mAb bioavailability is generally understood. We used a physiologically based pharmacokinetic model to predict pre-systemic clearance after SC administration mechanistically by incorporating the FcRn salvage pathway in antigen-presenting cells (APCs) in peripheral lymph nodes, draining the injection site. Clinically observed data of the removal rate of IgG from the arm as well as its plasma concentration after SC dosing were mostly predicted within the 95% confidence interval.

View Article and Find Full Text PDF

Inbred mouse strains KK.Cg-a/a and KK.Cg-Ay/a known as genetic models of type 2 diabetes mellitus significantly surpassed the control strain C57BL/6J in the body weight, relative weight of extractable fat, and basal blood glucose levels.

View Article and Find Full Text PDF

Professional phagocytes like neutrophils and macrophages tightly control what they consume, how much they consume, and when they move after cargo uptake. We show that plasma membrane abundance is a key arbiter of these cellular behaviors. Neutrophils and macrophages lacking the G protein subunit Gβ exhibited profound plasma membrane expansion, accompanied by marked reduction in plasma membrane tension.

View Article and Find Full Text PDF

Model-informed drug discovery advocates the use of mathematical modeling and simulation for improved efficacy in drug discovery. In the case of monoclonal antibodies (mAbs) against cell membrane antigens, this requires quantitative insight into the target tissue concentration levels. Protein mass spectrometry data are often available but the values are expressed in relative, rather than in molar concentration units that are easier to incorporate into pharmacokinetic models.

View Article and Find Full Text PDF

Professional phagocytes like neutrophils and macrophages tightly control what they eat, how much they eat, and when they move after eating. We show that plasma membrane abundance is a key arbiter of these cellular behaviors. Neutrophils and macrophages lacking the G-protein subunit Gb4 exhibit profound plasma membrane expansion due to enhanced production of sphingolipids.

View Article and Find Full Text PDF

A commercial strain of () 4597 bacteria was shown to reduce food intake and promote weight loss, effects possibly induced by the bacterial protein ClpB, an antigen-mimetic of the anorexigenic α-melanocyte-stimulating hormone. A decrease in the basal plasma glucose levels was also observed in overweight fasted humans and mice receiving . However, it is not known whether influences sweet taste preference and whether its protein extract or ClpB are sufficient to increase glucose tolerance; these are the objectives tested in the present study.

View Article and Find Full Text PDF

Biologics are a fast-growing therapeutic class, with intertwined pharmacokinetics and pharmacodynamics, affected by the abundance and function of the FcRn receptor. While many investigators assume adequacy of classical models, such as allometry, for pharmacokinetic characterization of biologics, advocates of physiologically-based pharmacokinetics (PBPK) propose consideration of known systems parameters that affect the fate of biologics to enable a priori predictions, which go beyond allometry. The aim of this study was to deploy a systems-informed modelling approach to predict the disposition of Fc-containing biologics.

View Article and Find Full Text PDF

Purpose: Sotrovimab (VIR-7831), a human IgG1κ monoclonal antibody (mAb), binds to a conserved epitope on the SARS-CoV-2 spike protein receptor binding domain (RBD). The Fc region of VIR-7831 contains an LS modification to promote neonatal Fc receptor (FcRn)-mediated recycling and extend its serum half-life. Here, we aimed to evaluate the impact of the LS modification on tissue biodistribution, by comparing VIR-7831 to its non-LS-modified equivalent, VIR-7831-WT, in cynomolgus monkeys.

View Article and Find Full Text PDF

Lung related disorders like COPD and Asthma, as well as various infectious diseases, form a major therapeutic area which would benefit from a predictive and adaptable mathematical model for describing pulmonary disposition of biological modalities. In this study we fill that gap by extending the cross-species two-pore physiologically-based pharmacokinetic (PBPK) platform with more detailed respiratory tract that includes the airways and alveolar space with epithelial lining fluid. We parameterize the paracellular and FcRn-facilitated exchange pathways between the epithelial lining fluid and lung interstitial space by building a mechanistic model for the exchange between the two.

View Article and Find Full Text PDF

The past two decades have seen diversification of drug development pipelines and approvals from traditional small molecule therapies to alternative modalities including monoclonal antibodies, engineered proteins, antibody drug conjugates (ADCs), oligonucleotides and gene therapies. At the same time, physiologically based pharmacokinetic (PBPK) models for small molecules have seen increased industry and regulatory acceptance.This review focusses on the current status of the application of PBPK models to these newer modalities and give a perspective on the successes, challenges and future directions of this field.

View Article and Find Full Text PDF

Model-informed drug discovery is endorsed by the US Food and Drug Administration (FDA) to improve the flow of medicines from bench to bedside. In the case of monoclonal antibodies, this necessitates taking into account not only the pharmacokinetic (PK) properties of the drug, but also the tissue distribution, concentration, and turnover of the target to guide dose and affinity selection, as well as serve as a link to downstream pharmacology. Relevant information (e.

View Article and Find Full Text PDF

The terminal pathway of complement is implicated in the pathology of multiple diseases and its inhibition is, therefore, an attractive therapeutic proposition. The practicalities of inhibiting this pathway, however, are challenging, as highlighted by the very few molecules in the clinic. The proteins are highly abundant, and assembly is mediated by high-affinity protein-protein interactions.

View Article and Find Full Text PDF

In recent years, great interest has arisen in the use of autoprobiotics (indigenous bacteria isolated from the organism and introduced into the same organism after growing). This study aimed to evaluate the effects of indigenous bifidobacteria on intestinal microbiota and digestive enzymes in a rat model of antibiotic-associated dysbiosis. Our results showed that indigenous bifidobacteria (the Bf group) accelerate the disappearance of dyspeptic symptoms in rats and prevent an increase in chyme mass in the upper intestine compared to the group without autoprobiotics (the C1 group), but significantly increase the mass of chyme in the colon compared to the C1 group and the control group (healthy animals).

View Article and Find Full Text PDF

Two-pore physiologically-based pharmacokinetics (PBPK) for biologics describes the tissue distribution and elimination kinetics of soluble proteins as a function of their hydrodynamic radius and the physiological properties of the organs. Whilst many studies have been performed in rodents to parameterize the PBPK framework in terms of organ-specific lymph flow rates, similar validation in humans has been limited. This is mainly due to the paucity of the tissue distribution time course data for biologics that is not distorted by target-related binding.

View Article and Find Full Text PDF

Platelets engage cues of pending vascular injury through coordinated adhesion, secretion, and aggregation responses. These rapid, progressive changes in platelet form and function are orchestrated downstream of specific receptors on the platelet surface and through intracellular signaling mechanisms that remain systematically undefined. This study brings together cell physiological and phosphoproteomics methods to profile signaling mechanisms downstream of the immunotyrosine activation motif (ITAM) platelet collagen receptor GPVI.

View Article and Find Full Text PDF

The core structure of the extracellular basement membrane is made up of self-assembling networks of collagen and laminin which associate with each other through the bridging adapter proteins including the sulfated monomeric glycoprotein nidogen. While collagen and laminin are known to support platelet adhesion and activation via β1 integrins and glycoprotein (GP) VI, respectively, whether nidogen contributes to platelet activation and hemostasis is unknown. In this study, we demonstrate that recombinant human nidogen-1 supports platelet adhesion and stimulates platelet activation in a phospholipase-C γ-2 (PLCγ2), Src and Syk kinase-dependent manner downstream.

View Article and Find Full Text PDF

Unlabelled: Conjugation or fusion to AlbudAbs™ (albumin-binding domain antibodies) is a novel approach to extend the half-life and alter the tissue distribution of biological and small molecule therapeutics. To understand extravasation kinetics and extravascular organ concentrations of AlbudAbs in humans, we studied tissue distribution and elimination of a non-conjugated Zr-labeled AlbudAb in healthy volunteers using positron emission tomography/computed tomography (PET/CT).

Methods: A non-conjugated AlbudAb (GSK3128349) was radiolabeled with Zr and a single 1 mg (~ 15 MBq) dose intravenously administered to eight healthy males.

View Article and Find Full Text PDF

Two-pore physiologically-based pharmacokinetic (PBPK) models can be expected to describe the tissue distribution and elimination kinetics of soluble proteins, endogenous or dosed, as function of their size. In this work, we amalgamated our previous two-pore PBPK model for an inert domain antibody (dAb) in mice with the cross-species platform PBPK model for monoclonal antibodies described in literature into a unified two-pore platform that describes protein modalities of different sizes and includes neonatal Fc receptor (FcRn) mediated recycling. This unified PBPK model was parametrized for organ-specific lymph flow rates and the endosomal recycling rate constant using an extended tissue distribution time-course dataset that included an inert dAb, albumin and IgG in rats and mice.

View Article and Find Full Text PDF

Despite the transient hyporeactivity of neonatal platelets, full-term neonates do not display a bleeding tendency, suggesting potential compensatory mechanisms which allow for balanced and efficient neonatal hemostasis. This study aimed to utilize small-volume, whole blood platelet functional assays to assess the neonatal platelet response downstream of the hemostatic platelet agonists thrombin and adenosine diphosphate (ADP). Thrombin activates platelets via the protease-activated receptors (PARs) 1 and 4, whereas ADP signals via the receptors P2Y and P2Y as a positive feedback mediator of platelet activation.

View Article and Find Full Text PDF

We have developed a mathematical framework for describing a bispecific monoclonal antibody interaction with two independent membrane-bound targets that are expressed on the same cell surface. The bispecific antibody in solution binds either of the two targets first, and then cross-links with the second one while on the cell surface, subject to rate-limiting lateral diffusion step within the lifetime of the monovalently engaged antibody-antigen complex. At experimental densities, only a small fraction of the free targets is expected to lie within the reach of the antibody binding sites at any time.

View Article and Find Full Text PDF

Interferon alpha (IFNα) is used for the treatment of hepatitis B virus infection, and whilst efficacious, it is associated with multiple adverse events caused by systemic exposure to interferon. We therefore hypothesise that targeting IFN directly to the intended site of action in the liver would reduce exposure in blood and peripheral tissue and hence improve the safety and tolerability of IFNα therapy. Furthermore we investigated whether directing IFN to the reservoir of infection in the liver may improve antiviral efficacy by increasing local concentration in target organs and tissues.

View Article and Find Full Text PDF

In addition to the desired specificity and affinity for their respective therapeutic targets, antibody-based drugs must also demonstrate an ability to be manufactured and formulated at the concentrations needed for therapeutic application and to remain resistant to aggregation during storage to reduce the risk of induced immunogenicity. Improvements to the thermodynamic stability of the folded state of the protein are considered to be critical for decreasing the aggregation propensity of the protein. In this work, we have improved the biophysical properties of a number of human domain antibodies (dAbs) by identifying mutations which decrease the propensity for dAb self-aggregation without compromising the affinity for their respective target antigen.

View Article and Find Full Text PDF

Domain antibodies (dAbs) are the smallest antigen-binding fragments of immunoglobulins. To date, there is limited insight into the pharmacokinetics of dAbs, especially their distribution into tissues and elimination. The objective of this work was to develop a physiologically-based pharmacokinetic model to investigate the biodisposition of a non-specific dAb construct in mice.

View Article and Find Full Text PDF

Acute Respiratory Distress Syndrome was reproduced in the non-linear male rats by the original method. The animals were injected lysate 45-55 thousand rat neutrophils in 0.2 mi 0.

View Article and Find Full Text PDF

Lung paraffin sections were studied in 35 patients who had died during the epidemic of A/H1N1 influenza, including 10, 16, and 9 persons diagnosed with exudative, proliferative, and fibrotic stages of acute respiratory distress syndrome (ARDS), respectively. Lung tissue factor (TF) expression was determined in the sections by immunohistochemistry. TF was found to express endothelium, neutrophils, macrophages, type II alveolocytes, and bronchial and metaplastic epithelia.

View Article and Find Full Text PDF