In this paper, we propose metric Hashing Forests (mHF) which is a supervised variant of random forests tailored for the task of nearest neighbor retrieval through hashing. This is achieved by training independent hashing trees that parse and encode the feature space such that local class neighborhoods are preserved and encoded with similar compact binary codes. At the level of each internal node, locality preserving projections are employed to project data to a latent subspace, where separability between dissimilar points is enhanced.
View Article and Find Full Text PDFThe steadily growing amounts of digital neuroscientific data demands for a reliable, systematic, and computationally effective retrieval algorithm. In this paper, we present Neuron-Miner, which is a tool for fast and accurate reference-based retrieval within neuron image databases. The proposed algorithm is established upon hashing (search and retrieval) technique by employing multiple unsupervised random trees, collectively called as Hashing Forests (HF).
View Article and Find Full Text PDF