In this study, efficiency of functionalized carbon nanotube as a potential delivery system for imatinib anti-cancer drug was investigated. Accordingly, carboxyl and hydroxyl functionalized carbon nanotube were inspected as a notable candidate for the carriage of this drug in aqueous media. For this purpose, possible interactions of imatinib with pure and functionalized carbon nanotube were considered in aqueous media.
View Article and Find Full Text PDFGiven that adsorption is widely regarded as a favorable technique for hydrogen storage, it is appropriate to pursue the development of suitable adsorbent materials for industrial storage. This study aimed to assess the potential of Fe-doped carbon nanotubes (FeCNT) as a remarkable material for hydrogen storage. The structures of pure and Fe-doped CNTs were optimized based on quantum mechanical calculations using density functional theory (DFT) with the Perdew-Burke-Ernzerhof (PBE) method.
View Article and Find Full Text PDFThe improvement of the solubility of sulfasalazine in physiological media was the major aim of this study. Accordingly, BNNT inspected as a notable candidate for the carriage of this drug in aqueous media. For this purpose, four possible interactions of two tautomer of sulfasalazine with (9,0) boron-nitride nanotube were considered in aqueous media.
View Article and Find Full Text PDFJ Recept Signal Transduct Res
October 2022
Mycobacterium tuberculosis (Mtb) is the causative agent of infectious diseases worldwide. Oxadiazole derivatives have many biological activities and can be a good alternative to antimicrobial drugs. In this study, the quantitative structure-activity relationship (QSAR) of fifty-one novel oxadiazoles derivatives has been studied using the density functional theory (DFT) and statistical methods.
View Article and Find Full Text PDFJ Recept Signal Transduct Res
August 2022
QSAR modeling was performed on 39 quinolone-triazole derivatives against gram-positive and gram-negative bacteria. The molecular structures were optimized using the DFT/B3LYP method and 6-31 G basis set. Molecular descriptors were extracted using quantum mechanical calculations.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
April 2017
Biological application of carbon nanotube in drug delivery is our main concern in this investigation. For this purpose interaction of carnosine and carbon nanotube was studied in both gas phase and separately in aqueous media. Three possible interactions of carnosine dipeptide with (5,5) carbon nanotube in physiological media were considered.
View Article and Find Full Text PDFEncapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were -4.
View Article and Find Full Text PDFDue to the importance of soluble nanotubes in biological systems, computational research on DNA base functionalized nanotubes is of interest. This study presents the quantitative results of Monte Carlo simulations of Li-doped silicon carbide nanotubes and its nucleic acid base complexes in water. Each species was first modeled by quantum mechanical calculations and then Monte Carlo simulations were applied to study their properties in aqueous solution.
View Article and Find Full Text PDFNanotubes are believed to open the road toward different modern fields, either technological or biological. However, the applications of nanotubes have been badly impeded for the poor solubility in water which is especially essential for studies in the presence of living cells. Therefore, water soluble samples are in demand.
View Article and Find Full Text PDFMost biological ion channels demonstrate a high degree of selectivity for one type of ion more than others, and in many cases, how they control attaining this is still not clear. So we have studied on some metal ion compounds of glutamate. The Glutamate and its meal ion compounds (Ca(2+), Na(+), K(+) and Li(+)) were first modeled by ab initio calculations and then Monte Carlo simulation was used to calculate solvation free energies and also the complexes free energies for the related structures.
View Article and Find Full Text PDF