Probiotics health benefits are hampered by long-term storage, gastrointestinal transit, and lack of adequate colonization within the colon. To this end, we have designed a core-shell structure that features an acid resistant core formulation with low water activity composed of alginate, hydroxypropyl methyl cellulose, and gellan gum (AHG) and a mucoadhesive shell made from chemically modified carboxymethyl chitosan with polyethylenimine (PEI-CMC). The structure of the core-shell microparticles was examined using scanning electron microscopy, and rheological measurements confirmed the improved ionic interactions between the core and the shell using the PEI-modified CMC.
View Article and Find Full Text PDFBlood-contacting medical devices often succumb to thrombosis, limiting their durability and safety in clinical applications. Thrombosis is fundamentally initiated by the nonspecific adsorption of proteins to the material surface, which is strongly governed by thermodynamic factors established by the nature of the interaction between the material surface, surrounding water molecules, and the protein itself. Along these lines, different surface materials (such as polymeric, metallic, ceramic, or composite) induce different entropic and enthalpic changes at the surface-protein interface, with material wettability significantly impacting this behavior.
View Article and Find Full Text PDFChronic wounds, depending on the bacteria that caused the infection, can be associated with an extreme acidic or basic pH. Therefore, the application of pH-responsive hydrogels has been instigated for the delivery of therapeutics to chronic wounds. Herein, with the aim of developing a flexible pH-responsive hydrogel, we functionalized hydrophilic polyurethanes with either cationic (polyethylene imine) or anionic (succinic anhydride) moieties.
View Article and Find Full Text PDFCRISPR biosensors enable rapid and accurate detection of nucleic acids without resorting to target amplification. Specifically, these systems facilitate the simultaneous detection of multiple nucleic acid targets with single-base specificity. This is an invaluable asset that can ultimately facilitate accurate diagnoses of biologically complex diseases.
View Article and Find Full Text PDFRNA-based therapeutics have shown tremendous promise in disease intervention at the genetic level, and some have been approved for clinical use, including the recent COVID-19 messenger RNA vaccines. The clinical success of RNA therapy is largely dependent on the use of chemical modification, ligand conjugation or non-viral nanoparticles to improve RNA stability and facilitate intracellular delivery. Unlike molecular-level or nanoscale approaches, macroscopic hydrogels are soft, water-swollen three-dimensional structures that possess remarkable features such as biodegradability, tunable physiochemical properties and injectability, and recently they have attracted enormous attention for use in RNA therapy.
View Article and Find Full Text PDFThe deployment of structures that enable localized release of bioactive molecules can result in more efficacious treatment of disease and better integration of implantable bionic devices. The strategic design of a biopolymeric coating can be used to engineer the optimal release profile depending on the task at hand. As illustrative examples, here advances in delivery of drugs from bone, brain, ocular, and cardiovascular implants are reviewed.
View Article and Find Full Text PDFThe potential health benefits of probiotics may not be realized because of the substantial reduction in their viability during food storage and gastrointestinal transit. Microencapsulation has been successfully utilized to improve the resistance of probiotics to critical conditions. Owing to the unique properties of biopolymers, they have been prevalently used for microencapsulation of probiotics.
View Article and Find Full Text PDFWith the aim of fabricating drug-loaded implantable patches, a 3D printing technique was employed to produce novel coaxial hydrogel patches. The core-section of these patches contained a dopamine-modified methacrylated alginate hydrogel loaded with a chemotherapeutic drug (Gemcitabine), while their shell section was solely comprised of a methacrylated alginate hydrogel. Subsequently, these patches were further modified with CaCO cross linker and a polylactic acid (PLA) coating to facilitate prolonged release of the drug.
View Article and Find Full Text PDFGellan-chitosan (GC) incorporated with CS: 0% (GC-0 CS), 10% (GC-10 CS), 20% (GC-20 CS) or 40% (GC-40 CS) / was prepared using freeze-drying method to investigate its physicochemical, biocompatible, and osteoinductive properties in human bone-marrow mesenchymal stromal cells (hBMSCs). The composition of different groups was reflected in physicochemical analyses performed using BET, FTIR, and XRD. The SEM micrographs revealed excellent hBMSCs attachment in GC-40 CS.
View Article and Find Full Text PDFAs the twenty-first century unfolds, nanotechnology is no longer just a buzzword in the field of materials science, but rather a tangible reality. This is evident from the surging number of commercial nanoproducts and their corresponding revenue generated in different industry sectors. However, it is important to recognize that sustainable growth of nanotechnology is heavily dependent on government funding and relevant national incentive programs.
View Article and Find Full Text PDFIn this study we use a combination of ionic- and photo-cross-linking to develop a fabrication method for producing biocompatible microstructures using a methacrylated gellan gum (a polyanion) and chitosan (a polycation) in addition to lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) as the photoinitiator. This work involves the development of a low-cost, portable 3D bioprinter and a customized extrusion mechanism for controlled introduction of the materials through a 3D printed microfluidic nozzle, before being cross-linked in situ to form robust microstructure bundles. The formed microstructures yielded a diameter of less than 1 μm and a tensile strength range of ∼1 MPa.
View Article and Find Full Text PDFCorrection for 'Revisiting gene delivery to the brain: silencing and editing' by João Conniot et al., Biomater. Sci.
View Article and Find Full Text PDFNeurodegenerative disorders, ischemic brain diseases, and brain tumors are debilitating diseases that severely impact a person's life and could possibly lead to their demise if left untreated. Many of these diseases do not respond to small molecule therapeutics and have no effective long-term therapy. Gene therapy offers the promise of treatment or even a cure for both genetic and acquired brain diseases, mediated by either silencing or editing disease-specific genes.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis, with surgical resection of the tumor in conjunction with systemic chemotherapy the only potential curative therapy. Up to 80% of diagnosed cases are deemed unresectable, prompting the need for alternative treatment approaches. Herein, coaxial polymeric fibers loaded with two chemotherapeutic agents, gemcitabine (Gem) and paclitaxel (Ptx), are fabricated to investigate the effect of local drug delivery on PDAC cell growth in vitro and in vivo.
View Article and Find Full Text PDFAlthough treating COVID-19 is shown to be challenging, NANOtechnology is around the corner to overcome potential drawbacks. The use of NANOtechnologies will definitely shape the worldwide approaches and tools to treat COVID-19. Here we highlight the importance of going NANO on the COVID-19 pandemic.
View Article and Find Full Text PDFBiopolymer-based hydrogels have emerged as promising platforms for drug delivery systems (DDSs) due to their inherent biocompatibility, tunable physical properties and controllable degradability. Yet, drug release in majority of these systems is solely contingent on diffusion of drug molecules through the hydrogel, which often leads to burst release of drugs from these systems. Herein, inspired by the chemistry of mussel adhesive proteins, a new generation of coaxial hydrogel fibers was developed that could simultaneously exert both affinity and diffusion control over the release of chemotherapeutic drugs.
View Article and Find Full Text PDFConductive biomaterials have recently gained much attention, specifically owing to their application for electrical stimulation of electrically excitable cells. Herein, flexible, electrically conducting, robust fibers composed of both an alginate biopolymer and graphene components have been produced using a wet-spinning process. These nanocomposite fibers showed better mechanical, electrical, and electrochemical properties than did single fibers that were made solely from alginate.
View Article and Find Full Text PDFFluorinated graphene has recently gained much attention for cancer drug delivery, owing to its peculiar properties including high electronegativity difference, magnetic resonance imaging contrast agent, and the photothermal effect. However, the hydrophobic nature of fluorinated graphene greatly hinders its application as a biological material. Herein, a novel green method is reported for synthesis of a pH-sensitive charge-reversal and water-soluble fluorinated graphene oxide, modified with polyethyleneimine anchored to sericin-polypeptide (FPS).
View Article and Find Full Text PDFGiven their durability and long-term stability, self-healable hydrogels have, in the past few years, emerged as promising replacements for the many brittle hydrogels currently being used in preclinical or clinical trials. To this end, the incompatibility between hydrogel toughness and rapid self-healing remains unaddressed, and therefore most of the self-healable hydrogels still face serious challenges within the dynamic and mechanically demanding environment of human organs/tissues. Furthermore, depending on the target tissue, the self-healing hydrogels must comply with a wide range of properties including electrical, biological, and mechanical.
View Article and Find Full Text PDFAlthough guest-filled carbon nanotube yarns provide record performance as torsional and tensile artificial muscles, they are expensive, and only part of the muscle effectively contributes to actuation. We describe a muscle type that provides higher performance, in which the guest that drives actuation is a sheath on a twisted or coiled core that can be an inexpensive yarn. This change from guest-filled to sheath-run artificial muscles increases the maximum work capacity by factors of 1.
View Article and Find Full Text PDFGiven their native-like biological properties, high growth factor retention capacity and porous nature, sulfated-polysaccharide-based scaffolds hold great promise for a number of tissue engineering applications. Specifically, as they mimic important properties of tissues such as bone and cartilage they are ideal for orthopaedic tissue engineering. Their biomimicry properties encompass important cell-binding motifs, native-like mechanical properties, designated sites for bone mineralisation and strong growth factor binding and signaling capacity.
View Article and Find Full Text PDFIn spite of remarkable improvements in cancer treatments and survivorship, cancer still remains as one of the major causes of death worldwide. Although current standards of care provide encouraging results, they still cause severe systemic toxicity and also fail in preventing recurrence of the disease. In order to address these issues, biomaterial-based implantable drug delivery systems (DDSs) have emerged as promising therapeutic platforms, which allow local administration of drugs directly to the tumor site.
View Article and Find Full Text PDFIn this study, effect of degree of deacetylation on property and adsorption capacity of chitosan/polyvinyl Alcohol electrospun membrane has been investigated. Resulting nanofibers were characterized by FESEM, FTIR, XRD, TGA, tensile testing, weight loss test and adsorption test. FESEM result shows, finer nanofiber was fabricated from 42h hydrolyzed chitosan and PVA blend solution.
View Article and Find Full Text PDFBackground/objectives: There has been minimal improvement in the prognosis of pancreatic cancer cases in the past 3 decades highlighting the crucial need for more effective therapeutic approaches. A drug delivery system capable of locally delivering high concentrations of chemotherapeutics directly at the site of the tumor is clearly required. The aim of this study was to fabricate and characterize the biophysical properties of gemcitabine-eluting wet-spun polymeric fibers for localized drug delivery applications.
View Article and Find Full Text PDF