Publications by authors named "Sepehr Ehsani"

The quest to determine the function of a protein can represent a profound challenge. Although this task is the mandate of countless research groups, a general framework for how it can be approached is conspicuously lacking. Moreover, even expectations for when the function of a protein can be considered to be 'known' are not well defined.

View Article and Find Full Text PDF

The spike glycoprotein of the SARS-CoV-2 virus, which causes COVID-19, has attracted attention for its vaccine potential and binding capacity to host cell surface receptors. Much of this research focus has centered on the ectodomain of the spike protein. The ectodomain is anchored to a transmembrane region, followed by a cytoplasmic tail.

View Article and Find Full Text PDF

Numerous genes and molecular pathways are implicated in neurodegenerative proteinopathies, but their inter-relationships are poorly understood. We systematically mapped molecular pathways underlying the toxicity of alpha-synuclein (α-syn), a protein central to Parkinson's disease. Genome-wide screens in yeast identified 332 genes that impact α-syn toxicity.

View Article and Find Full Text PDF

The prion protein (PrP) evolved from the subbranch of ZIP metal ion transporters comprising ZIPs 5, 6 and 10, raising the prospect that the study of these ZIPs may reveal insights relevant for understanding the function of PrP. Building on data which suggested PrP and ZIP6 are critical during epithelial-to-mesenchymal transition (EMT), we investigated ZIP6 in an EMT paradigm using ZIP6 knockout cells, mass spectrometry and bioinformatic methods. Reminiscent of PrP, ZIP6 levels are five-fold upregulated during EMT and the protein forms a complex with NCAM1.

View Article and Find Full Text PDF

Knowledge of phenotypic changes the cellular prion protein (PrP(C)) contributes to may provide novel avenues for understanding its function. Here we consider data from functional knockout/down studies and protein-protein interaction analyses from the perspective of PrP's relationship to its ancestral ZIP metal ion transporting proteins. When approached in this manner, a role of PrP(C) as a modulator of a complex morphogenetic program that underlies epithelial-to-mesenchymal transition (EMT) emerges.

View Article and Find Full Text PDF

The disheartening results of recent clinical trials for neurodegenerative disease (ND) therapeutics underscore the need for a more comprehensive understanding of the underlying disease biology before effective therapies can be devised. One hallmark of many NDs is a disruption in protein homeostasis. Therefore, investigating the role of protein homeostasis in these diseases is central to delineating their underlying pathobiology.

View Article and Find Full Text PDF

The cellular prion protein (PrP(C)) was recently observed to co-purify with members of the LIV-1 subfamily of ZIP zinc transporters (LZTs), precipitating the surprising discovery that the prion gene family descended from an ancestral LZT gene. Here, we compared the subcellular distribution and biophysical characteristics of LZTs and their PrP-like ectodomains. When expressed in neuroblastoma cells, the ZIP5 member of the LZT subfamily was observed to be largely directed to the same subcellular locations as PrP(C) and both proteins were seen to be endocytosed through vesicles decorated with the Rab5 marker protein.

View Article and Find Full Text PDF

We recently documented the co-purification of members of the LIV-1 subfamily of ZIP (Zrt-, Irt-like Protein) zinc transporters (LZTs) with the cellular prion protein (PrP(C)) and, subsequently, established that the prion gene family descended from an ancestral LZT gene. Here, we begin to address whether the study of LZTs can shed light on the biology of prion proteins in health and disease. Starting from an observation of an abnormal LZT immunoreactive band in prion-infected mice, subsequent cell biological analyses uncovered a surprisingly coordinated biology of ZIP10 (an LZT member) and prion proteins that involves alterations to N-glycosylation and endoproteolysis in response to manipulations to the extracellular divalent cation milieu.

View Article and Find Full Text PDF

The evolutionary origins of vertebrate prion genes had remained elusive until recently when multiple lines of evidence converged to the proposition that members of the prion gene family represent an ancient branch of a larger family of ZIP metal ion transporters. (1) A follow-up investigation which explored the mechanism of evolution in more detail led to the surprising conclusion that the emergence of the prion founder gene likely involved the reverse transcription of a spliced transcript of a LIV-1 ZIP predecessor gene. (2) The objective of this perspective is to discuss the possible significance of this reunion of ZIP and prion gene subfamilies for understanding the biology of the prion protein in health and disease.

View Article and Find Full Text PDF

Prions are units of propagation of an altered state of a protein or proteins; prions can propagate from organism to organism, through cooption of other protein copies. Prions contain no necessary nucleic acids, and are important both as both pathogenic agents, and as a potential force in epigenetic phenomena. The original prions were derived from a misfolded form of the mammalian Prion Protein PrP.

View Article and Find Full Text PDF

The evolutionary origin of prion genes, only known to exist in the vertebrate lineage, had remained elusive until recently. Following a lead from interactome investigations of the murine prion protein, our previous bioinformatic analyses revealed the evolutionary descent of prion genes from an ancestral ZIP metal ion transporter. However, the molecular mechanism of evolution remained unexplored.

View Article and Find Full Text PDF

DJ-1 is a small but relatively abundant protein of unknown function that may undergo stress-dependent cellular translocation and has been implicated in both neurodegenerative diseases and cancer. As such, DJ-1 may be an excellent study object to elucidate the relative influence of the cellular context on its interactome and for exploring whether acute exposure to oxidative stressors alters its molecular environment. Using quantitative mass spectrometry, we conducted comparative DJ-1 interactome analyses from in vivo cross-linked brains or livers and from hydrogen peroxide-treated or naïve embryonic stem cells.

View Article and Find Full Text PDF

Prion diseases are fatal neurodegenerative diseases of humans and animals which, in addition to sporadic and familial modes of manifestation, can be acquired via an infectious route of propagation. In disease, the prion protein (PrP(C)) undergoes a structural transition to its disease-causing form (PrP(Sc)) with profoundly different physicochemical properties. Surprisingly, despite intense interest in the prion protein, its function in the context of other cellular activities has largely remained elusive.

View Article and Find Full Text PDF

The physiological environment which hosts the conformational conversion of the cellular prion protein (PrP(C)) to disease-associated isoforms has remained enigmatic. A quantitative investigation of the PrP(C) interactome was conducted in a cell culture model permissive to prion replication. To facilitate recognition of relevant interactors, the study was extended to Doppel (Prnd) and Shadoo (Sprn), two mammalian PrP(C) paralogs.

View Article and Find Full Text PDF

In the more than twenty years since its discovery, both the phylogenetic origin and cellular function of the prion protein (PrP) have remained enigmatic. Insights into a possible function of PrP may be obtained through the characterization of its molecular neighborhood in cells. Quantitative interactome data demonstrated the spatial proximity of two metal ion transporters of the ZIP family, ZIP6 and ZIP10, to mammalian prion proteins in vivo.

View Article and Find Full Text PDF

We report the case of a 63-year-old man who developed an anaplastic oligoastrocytoma of the brain stem and midbrain 13 years after postoperative high-dose proton-photon radiation therapy for a recurrent low-grade chondrosarcoma of the skull base. To our knowledge, this is the first reported case of an anaplastic glioma after proton-photon irradiation.

View Article and Find Full Text PDF

University Health Network (UHN) Pathology, in its capacity of providing neuro-oncologic care, now utilizes a laboratory information system (LIS), which was instituted in September 2001. For the 75 years preceding the LIS, more than 50 000 pathology reports exist in paper format. High-throughput automated scanning of the paper archives was employed to add the most recent 30 years of paper records (30 000 neuropathology specimens) to the LIS.

View Article and Find Full Text PDF