Publications by authors named "Sepalika Bandara"

Malaria, a devastating parasitic infection, is the leading cause of death in many developing countries. Unfortunately, the most deadliest causative agent of malaria, , has developed resistance to nearly all currently available antimalarial drugs. The Niemann-Pick type C1-related (PfNCR1) transporter has been identified as a druggable target, but its structure and detailed molecular mechanism are not yet available.

View Article and Find Full Text PDF

Various species of ascomycete fungi synthesize the carboxylic carotenoid neurosporaxanthin. The unique chemical structure of this xanthophyll reveals that: (1) Its carboxylic end and shorter length increase the polarity of neurosporaxanthin in comparison to other carotenoids, and (2) it contains an unsubstituted β-ionone ring, conferring the potential to form vitamin A. Previously, neurosporaxanthin production was optimized in Fusarium fujikuroi, which allowed us to characterize its antioxidant properties in in vitro assays.

View Article and Find Full Text PDF

The scavenger receptor class B type 1 (SR-B1) facilitates uptake of cholesterol and carotenoids into the plasma membrane (PM) of mammalian cells. Downstream of SR-B1, ASTER-B protein mediates the nonvesicular transport of cholesterol to mitochondria for steroidogenesis. Mitochondria also are the place for the processing of carotenoids into diapocarotenoids by β-carotene oxygenase-2.

View Article and Find Full Text PDF

Phytochromes are red-light photoreceptors that regulate a wide range of physiological processes in plants, fungi and bacteria. Canonical bacteriophytochromes are photosensory histidine kinases that undergo light-dependent autophosphorylation, thereby regulating cellular responses to red light via two-component signaling pathways. However, the molecular mechanism of kinase activation remains elusive for bacteriophytochromes.

View Article and Find Full Text PDF

Carotenoids play pivotal roles in vision as light filters and precursor of chromophore. Many vertebrates also display the colorful pigments as ornaments in bare skin parts and feathers. Proteins involved in the transport and metabolism of these lipids have been identified including class B scavenger receptors and carotenoid cleavage dioxygenases.

View Article and Find Full Text PDF

Carotenoids constitute an essential dietary component of animals and other non-carotenogenic species which use these pigments in both their modified and unmodified forms. Animals utilize uncleaved carotenoids to mitigate light damage and oxidative stress and to signal fitness and health. Carotenoids also serve as precursors of apocarotenoids including retinol, and its retinoid metabolites, which carry out essential functions in animals by forming the visual chromophore 11-cis-retinaldehyde.

View Article and Find Full Text PDF

Some mammalian tissues uniquely concentrate carotenoids, but the underlying biochemical mechanism for this accumulation has not been fully elucidated. For instance, the central retina of the primate eyes displays high levels of the carotenoids, lutein, and zeaxanthin, whereas the pigments are largely absent in rodent retinas. We previously identified the scavenger receptor class B type 1 and the enzyme β-carotene-oxygenase-2 (BCO2) as key components that determine carotenoid concentration in tissues.

View Article and Find Full Text PDF

Siamese fighting (betta) fish are among the most popular and morphologically diverse pet fish, but the genetic bases of their domestication and phenotypic diversification are largely unknown. We assembled de novo the genome of a wild and whole-genome sequenced 98 individuals across five closely related species. We find evidence of bidirectional hybridization between domesticated ornamental betta and other wild species.

View Article and Find Full Text PDF

Cyanobacteriochromes (CBCRs) are small, linear tetrapyrrole (bilin)-binding photoreceptors in the phytochrome superfamily that regulate diverse light-mediated adaptive processes in cyanobacteria. More spectrally diverse than canonical red/far-red-sensing phytochromes, CBCRs were thought to be restricted to sensing visible and near UV light until recently when several subfamilies with far-red-sensing representatives (frCBCRs) were discovered. Two of these frCBCRs subfamilies have been shown to incorporate bilin precursors with larger pi-conjugated chromophores, while the third frCBCR subfamily uses the same phycocyanobilin precursor found in the bulk of the known CBCRs.

View Article and Find Full Text PDF

In mammals, carotenoids are converted by two carotenoid cleavage oxygenases into apocarotenoids, including vitamin A. Although knowledge about β-carotene oxygenase-1 (BCO1) and vitamin A metabolism has tremendously increased, the function of β-carotene oxygenase-2 (BCO2) remains less well-defined. We here studied the role of BCO2 in the metabolism of long chain β-apocarotenoids, which recently emerged as putative regulatory molecules in mammalian biology.

View Article and Find Full Text PDF

Direct observation of functional motions in protein structures is highly desirable for understanding how these nanomachineries of life operate at the molecular level. Because cryogenic temperatures are non-physiological and may prohibit or even alter protein structural dynamics, it is necessary to develop robust X-ray diffraction methods that enable routine data collection at room temperature. We recently reported a crystal-on-crystal device to facilitate diffraction of protein crystals at room temperature devoid of any sample manipulation.

View Article and Find Full Text PDF

The enzyme β-carotene oxygenase 2 (BCO2) converts carotenoids into more polar metabolites. Studies in mammals, fish, and birds revealed that BCO2 controls carotenoid homeostasis and is involved in the pathway for vitamin A production. However, it is controversial whether BCO2 function is conserved in humans, because of a 4-amino acid long insertion caused by a splice acceptor site polymorphism.

View Article and Find Full Text PDF

Signal detection and integration by sensory proteins constitute the critical molecular events as living organisms respond to changes in a complex environment. Many sensory proteins adopt a modular architecture that integrates the perception of distinct chemical or physical signals and the generation of a biological response in the same protein molecule. Currently, how signal perception and integration are achieved in such a modular, often dimeric, framework remains elusive.

View Article and Find Full Text PDF

Recent developments in serial crystallography at X-ray free electron lasers (XFELs) and synchrotrons have been driven by two scientific goals in structural biology - first, static structure determination from nano or microcrystals of membrane proteins and large complexes that are difficult for conventional cryocrystallography, and second, direct observations of transient structural species in biochemical reactions at near atomic resolution. Since room-temperature diffraction experiments naturally demand a large quantity of purified protein, sample economy is critically important for all steps of serial crystallography from crystallization, crystal delivery to data collection. Here we report the development and applications of "crystal-on-crystal" devices to facilitate large-scale in situ serial diffraction experiments on protein crystals of all sizes - large, small, or microscopic.

View Article and Find Full Text PDF

Photoprotection is essential for efficient photosynthesis. Cyanobacteria have evolved a unique photoprotective mechanism mediated by a water-soluble carotenoid-based photoreceptor known as orange carotenoid protein (OCP). OCP undergoes large conformational changes in response to intense blue light, and the photoactivated OCP facilitates dissipation of excess energy via direct interaction with allophycocyanins at the phycobilisome core.

View Article and Find Full Text PDF