Background: Plant senescence is the process of physiological maturation of plants and is important for crop yield and quality. Senescence is controlled by several factors, such as temperature and photoperiod. However, the molecular basis by which these genes promote senescence in soybeans is not well understood.
View Article and Find Full Text PDFThe field study was undertaken to examine the potential for adverse effects of transgenic soybean expressing bioactive human epidermal growth factor (with tolerance to the herbicide glufosinate, PPT) on the abundance and diversity of plant-dwelling arthropods by comparing with those of a non-GM parental cultivar, Gwangan soybean. Field surveys of soybean fields were carried out over two consecutive years, 2016 and 2017 at Ochang and Jeonju, Korea. The number of captured individuals associated with either of EGF and Gwangan soybean plants increased in 2017 compared with 2016 in both Ochang and Jeonju.
View Article and Find Full Text PDFThis study was investigated to compare the natural variation of nutrients in rice variety by different environmental factors. Fifteen kinds of rices were used, which were cultivated in two locations for 2 years. All data were analyzed by the various statistical tools to identify the nutritional variations of nutrients.
View Article and Find Full Text PDFSmall heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water.
View Article and Find Full Text PDFMitogen-activated protein kinases (MAPK) signalling cascades are activated by extracellular stimuli such as environmental stresses and pathogens in higher eukaryotic plants. To know more about MAPK signalling in plants, aMAPK cDNA clone, OsMAPK33, was isolated from rice. The gene is mainly induced by drought stress.
View Article and Find Full Text PDFPotato (Solanum tuberosum) is relatively vulnerable to abiotic stress conditions such as drought, but the tolerance mechanisms for such stresses in potato are largely unknown. To identify stress-related factors in potato, we previously carried out a genetic screen of potato plants exposed to abiotic environmental stress conditions using reverse northern-blot analysis. A cDNA encoding a putative R1-type MYB-like transcription factor (StMYB1R-1) was identified as a putative stress-response gene.
View Article and Find Full Text PDFHost-mediated (hm) expression of parasite genes as tandem inverted repeats was investigated as a means to abrogate the formation of mature Heterodera glycines (soybean cyst nematode) female cysts during its infection of Glycine max (soybean). A Gateway-compatible hm plant transformation system was developed specifically for these experiments in G. max.
View Article and Find Full Text PDFTo identify components of the plant stress signal transduction cascade and response mechanisms, we screened plant genes using reverse Northern blot analysis, and chose the ethylene responsive element binding protein 1 (StEREBP1) for further characterization. To investigate its biological function in the potato, we performed Northern blot analysis and observed enhanced levels of transcription in response to several environmental stresses including low temperature. In vivo targeting experiments using a green fluorescent protein (GFP) reporter indicated that StEREBP1 localized to the nucleus of onion epidermal cells.
View Article and Find Full Text PDF