Wheels have been commonly used for locomotion in mobile robots and transportation systems because of their simple structure and energy efficiency. However, the performance of wheels in overcoming obstacles is limited compared with their advantages in driving on normal flat ground. Here, we present a variable-stiffness wheel inspired by the surface tension of a liquid droplet.
View Article and Find Full Text PDFSkin-resident CD8 T cells include distinct interferon-γ-producing [tissue-resident memory T type 1 (T1)] and interleukin-17 (IL-17)-producing (T17) subsets that differentially contribute to immune responses. However, whether these populations use common mechanisms to establish tissue residence is unknown. In this work, we show that T1 and T17 cells navigate divergent trajectories to acquire tissue residency in the skin.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2023
The microbiota performs multiple functions vital to host fitness, including defense against pathogens and adaptation to dietary changes. Yet, how environmental challenges shape microbiota resilience to nutrient fluctuation remains largely unexplored. Here, we show that transient gut infection can optimize host metabolism toward the usage of carbohydrates.
View Article and Find Full Text PDFTissue immunity and responses to injury depend on the coordinated action and communication among physiological systems. Here, we show that, upon injury, adaptive responses to the microbiota directly promote sensory neuron regeneration. At homeostasis, tissue-resident commensal-specific T cells colocalize with sensory nerve fibers within the dermis, express a transcriptional program associated with neuronal interaction and repair, and promote axon growth and local nerve regeneration following injury.
View Article and Find Full Text PDFImmune checkpoint inhibitors (ICIs) are essential components of the cancer therapeutic armamentarium. While ICIs have demonstrated remarkable clinical responses, they can be accompanied by immune-related adverse events (irAEs). These inflammatory side effects are of unclear etiology and impact virtually all organ systems, with the most common being sites colonized by the microbiota such as the skin and gastrointestinal tract.
View Article and Find Full Text PDFThe microbiota plays a fundamental role in regulating host immunity. However, the processes involved in the initiation and regulation of immunity to the microbiota remain largely unknown. Here, we show that the skin microbiota promotes the discrete expression of defined endogenous retroviruses (ERVs).
View Article and Find Full Text PDFThe cross-talk between the microbiota and the immune system plays a fundamental role in the control of host physiology. However, the tissue-specific factors controlling this dialogue remain poorly understood. Here we demonstrate that T cell responses to commensal colonization are associated with the development of organized cellular clusters within the skin epithelium.
View Article and Find Full Text PDFHow early-life colonization and subsequent exposure to the microbiota affect long-term tissue immunity remains poorly understood. Here, we show that the development of mucosal-associated invariant T (MAIT) cells relies on a specific temporal window, after which MAIT cell development is permanently impaired. This imprinting depends on early-life exposure to defined microbes that synthesize riboflavin-derived antigens.
View Article and Find Full Text PDFLaboratory mouse studies are paramount for understanding basic biological phenomena but also have limitations. These include conflicting results caused by divergent microbiota and limited translational research value. To address both shortcomings, we transferred C57BL/6 embryos into wild mice, creating "wildlings.
View Article and Find Full Text PDFThe classic anti-viral cytokine interferon (IFN)-β can be induced during parasitic infection, but relatively little is know about the cell types and signaling pathways involved. Here we show that inflammatory monocytes (IMs), but not neutrophils, produce IFN-β in response to T. gondii infection.
View Article and Find Full Text PDFToxoplasma gondii infection occurs through the oral route, but we lack important information about how the parasite interacts with the host immune system in the intestine. We used two-photon laser-scanning microscopy in conjunction with a mouse model of oral T. gondii infection to address this issue.
View Article and Find Full Text PDFInfection leads to heightened activation of natural killer (NK) cells, a process that likely involves direct cell-to-cell contact, but how this occurs in vivo is poorly understood. We have used two-photon laser-scanning microscopy in conjunction with Toxoplasma gondii mouse infection models to address this question. We found that after infection, NK cells accumulated in the subcapsular region of the lymph node, where they formed low-motility contacts with collagen fibers and CD169(+) macrophages.
View Article and Find Full Text PDFClearance of infection with intracellular pathogens in mice involves interferon-regulated GTPases of the IRG protein family. Experiments with mice genetically deficient in members of this family such as Irgm1(LRG-47), Irgm3(IGTP), and Irgd(IRG-47) has revealed a critical role in microbial clearance, especially for Toxoplasma gondii. The in vivo role of another member of this family, Irga6 (IIGP, IIGP1) has been studied in less detail.
View Article and Find Full Text PDFCell death is an important mechanism to limit uncontrolled T-cell expansion during immune responses. Given the role of death-receptor adapter protein Fas-associated death domain (FADD) in apoptosis, it is intriguing that T-cell receptor (TCR)-induced proliferation is blocked in FADD-defective T cells. Necroptosis is an alternate form of death that can be induced by death receptors and is linked to autophagy.
View Article and Find Full Text PDF