Numerous recent research efforts have leveraged networks of rigid struts and flexible cables, called tensegrity structures, to create highly resilient and packable mobile robots. However, the locomotion of existing tensegrity robots is limited in terms of both speed and number of distinct locomotion modes, restricting the environments that a robot is capable of exploring. In this study, we present a tensegrity robot inspired by the volumetric expansion of Tetraodontidae.
View Article and Find Full Text PDFMagnesium batteries have the potential to be a next generation battery with large capability and high safety, owing to the high abundance, great volumetric energy density, and reversible dendrite-free capability of Mg anodes. However, the lack of a stable high-voltage electrolyte, and the sluggish Mg-ion diffusion in lattices and through interfaces limit the practical uses of Mg batteries. Herein, a spinel MgIn S microflower-like material assembled by 2D-ultrathin (≈5.
View Article and Find Full Text PDF