Publications by authors named "Seongdong Lim"

Sustainability has become a critical concern in the semiconductor industry as hazardous wastes released during the manufacturing process of semiconductor devices have an adverse impact on human beings and the environment. The use of hazardous solvents in existing fabrication processes also restricts the use of polymer substrates because of their low chemical resistance to such solvents. Here, we demonstrate an environmentally friendly mechanical, bilayer lithography that uses just water for development and lift-off.

View Article and Find Full Text PDF

Silver nanowire (AgNW) electrodes attract significant attention in flexible and transparent optoelectronic devices; however, high-resolution patterning of AgNW electrodes remains a considerable challenge. In this study, we have introduced a simple technique for high-resolution solution patterning of AgNW networks, based on simple filtration of AgNW solution on a patterned polyimide shadow mask. This solution process allows the smallest pattern size of AgNW electrodes, down to a width of 3.

View Article and Find Full Text PDF

Artificial tongues have been receiving increasing attention for the perception of five basic tastes. However, it is still challenging to fully mimic human tongue-like performance for tastes such as astringency. Mimicking the mechanism of astringency perception on the human tongue, we use a saliva-like chemiresistive ionic hydrogel anchored to a flexible substrate as a soft artificial tongue.

View Article and Find Full Text PDF

Hybrid photovoltaics (HPVs) incorporating both organic and inorganic semiconducting materials have attracted much attention as next-generation photovoltaics because of their advantage of combining both materials. The hybridization of ZnO nanowires (NWs) and organic semiconductors is expected to be a suitable approach to overcome the limited exciton diffusion length and low electron mobility associated with current organic photovoltaics. The use of ZnO NWs allows researchers to tune nanoscale dimensions more precisely and to achieve rod-to-rod spacing below 10 nm.

View Article and Find Full Text PDF

Semiconductor heterostructures have enabled numerous applications in diodes, photodetectors, junction field-effect transistors, and memory devices. Two-dimensional (2D) materials and III-V compound semiconductors are two representative materials providing excellent heterojunction platforms for the fabrication of heterostructure devices. The marriage between these semiconductors with completely different crystal structures may enable a new heterojunction with unprecedented physical properties.

View Article and Find Full Text PDF

Flexible electronic devices that are lightweight and wearable are critical for personal healthcare systems, which are not restricted by time and space. To monitor human bio-signals in a non-invasive manner, skin-conforming, highly sensitive, reliable, and sustainable healthcare monitoring devices are required. In this review, we introduce flexible and wearable sensors based on engineered functional nano/micro-materials with unique sensing capabilities for detection of physical and electrophysiological vital signs of humans.

View Article and Find Full Text PDF

The gradient stiffness between stiff epidermis and soft dermis with interlocked microridge structures in human skin induces effective stress transmission to underlying mechanoreceptors for enhanced tactile sensing. Inspired by skin structure and function, we fabricate hierarchical nanoporous and interlocked microridge structured polymers with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors (TESs). The skin-inspired hierarchical polymers with gradient elastic modulus enhance the compressibility and contact areal differences due to effective transmission of the external stress from stiff to soft layers, resulting in highly sensitive TESs capable of detecting human vital signs and voice.

View Article and Find Full Text PDF

van der Waals heterostructures based on stacked two-dimensional (2D) materials provide novel device structures enabling high-performance electronic and optoelectronic devices. While 2D-2D or 2D-bulk heterostructures have been largely explored for fundamental understanding and novel device applications, 2D-one-dimensional (1D) heterostructures have been rarely studied because of the difficulty in achieving high-quality heterojunctions between 2D and 1D structures. In this study, we introduce nanosheet-on-1D van der Waals heterostructure photodetectors based on a wet-transfer printing of a MoS nanosheet on top of a CuO nanowire (NW).

View Article and Find Full Text PDF

Development of broadband photodetectors is of great importance for applications in high-capacity optical communication, night vision, and biomedical imaging systems. While heterostructured photodetectors can expand light detection range, fabrication of heterostructures via epitaxial growth or wafer bonding still faces significant challenges because of problems such as lattice and thermal mismatches. Here, a transfer printing technique is used for the heterogeneous integration of InGaAs nanomembranes on silicon semiconductors and thus the formation of van der Waals heterojunction photodiodes, which can enhance the spectral response and photoresponsivity of Si photodiodes.

View Article and Find Full Text PDF

By mimicking muscle actuation to control cavity-pressure-induced adhesion of octopus suckers, smart adhesive pads are developed in which the thermoresponsive actuation of a hydrogel layer on elastomeric microcavity pads enables excellent switchable adhesion in response to a thermal stimulus (maximum adhesive strength: 94 kPa, adhesion switching ratio: ≈293 for temperature change between 22 and 61 °C).

View Article and Find Full Text PDF

Tunable surface morphology in III-V semiconductor nanomembranes provides opportunities to modulate electronic structures and light interactions of semiconductors. Here, we introduce a vacuum-induced wrinkling method for the formation of ordered wrinkles in InGaAs nanomembranes (thickness, 42 nm) on PDMS microwell arrays as a strategy for deterministic and multidirectional wrinkle engineering of semiconductor nanomembranes. In this approach, a vacuum-induced pressure difference between the outer and inner sides of the microwell patterns covered with nanomembranes leads to bulging of the nanomembranes at the predefined microwells, which, in turn, results in stretch-induced wrinkle formation of the nanomembranes between the microwells.

View Article and Find Full Text PDF

A capsid-forming enzyme, lumazine synthase isolated from hyperthermophile Aquifex aeolicus (AaLS), is prepared and utilized as a template for constructing nanobuilding blocks to fabricate uniform layer-by-layer (LbL) assemblies. Two functionally complementary AaLS protein cage nanoparticles (PCNs) are generated either by genetically introducing His-tags on the surface of wild-type AaLS PCNs or by chemically attaching metal chelates (Ni-NTA moiety) to the surface of cysteine-bearing AaLS PCNs individually. The multivalent displays of His-tags (AaLS-His PCN) and Ni-NTA ligands (AaLS-NTA-Ni PCN) on the surface of each complementary AaLS PCN are successfully demonstrated by mass spectrometric and surface plasmon resonance analyses.

View Article and Find Full Text PDF

We demonstrate gate-controlled spin-orbit interaction (SOI) in InAs high-electron mobility transistor (HEMT) structures transferred epitaxially onto Si substrates. Successful epitaxial transfer of the multilayered structure after separation from an original substrate ensures that the InAs HEMT maintains a robust bonding interface and crystalline quality with a high electron mobility of 46200 cm(2)/(V s) at 77 K. Furthermore, Shubnikov-de Haas (SdH) oscillation analysis reveals that a Rashba SOI parameter (α) can be manipulated using a gate electric field for the purpose of spin field-effect transistor operation.

View Article and Find Full Text PDF