The rapid, accurate diagnosis of Plasmodium spp. is essential for the effective control of malaria, especially in asymptomatic infections. In this study, we developed a sensitive, genus-specific, real-time quantitative PCR assay.
View Article and Find Full Text PDFPlasma membrane (PM) microdomains, including caveolae and other cholesterol-enriched subcompartments, are involved in the regulation of many cellular processes, including endocytosis, attachment and signaling. We recently reported that brief incubation of human skin fibroblasts with the synthetic glycosphingolipid, D-erythro-octanoyl-lactosylceramide (C8-D-e-LacCer), stimulates endocytosis via caveolae and induces the appearance of micron-size microdomains on the PM. To further understand the effects of C8-D-e-LacCer treatment on PM microdomains, we used a detergent-free method to isolate microdomain-enriched membranes from fibroblasts treated +/-C8-D-e-LacCer, and performed 2-DE and mass spectrophotometry to identify proteins that were altered in their distribution in microdomains.
View Article and Find Full Text PDFCaveolar endocytosis is an important mechanism for the uptake of certain pathogens and toxins and also plays a role in the internalization of some plasma membrane (PM) lipids and proteins. However, the regulation of caveolar endocytosis is not well understood. We previously demonstrated that caveolar endocytosis and beta1-integrin signaling are stimulated by exogenous glycosphingolipids (GSLs).
View Article and Find Full Text PDFThe mouse mu-opioid receptor (MOR) gene has two promoters, referred to as distal and proximal promoter. Previously, our colleagues reported that a 26-base pair (bp) cis-acting element of the mouse MOR gene activates MOR gene expression. Here, we report the cloning of four members of the poly(C) binding protein (PCBP) family and show that the 26-bp polypyrimidine stretch in MOR proximal promoter interacts with these PCBPs and activates MOR transcription.
View Article and Find Full Text PDFBrain Res Mol Brain Res
January 2005
Morphine has been used as a potent analgesic, having a high propensity to induce tolerance and physical dependence following their repeated administration. Although the mechanisms that underlie the development of dependence on morphine remain unclear, previous studies suggested that phosphorylations of diverse types of cellular proteins are crucial determinants of the neuroadaptive mechanisms associated with morphine dependence. Thus, understanding global phosphorylation events induced by chronic morphine administration is essential for understanding the complex signaling mechanisms of morphine dependence.
View Article and Find Full Text PDFButorphanol (17-cyclobutylmethyl-3,14-dihydroxymorphinan) tartrate (Stadol) is a mixed agonist-antagonist opioid analgesic agent that is about five to seven times as potent as morphine in analgesic effects. The chronic use of butorphanol produces physical dependence in humans and animals. Phosphorylation plays a very important role in developing butorphanol dependence; however, global phosphorylation events induced by chronic butorphanol administration have not been reported.
View Article and Find Full Text PDFkappa-Opioid receptor agonists decrease the levels of extracellular dopamine in vivo and in vitro. However, the mechanism(s) underlying these actions are unclear. The objective of this study was to distinguish between an effect of the selective kappa-opioid receptor agonist U-50,488H ((trans-(+/-)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]cyclohexyl)benzeneacetamide methanesulfonate) on secretion and reuptake of dopamine by PC12 cells.
View Article and Find Full Text PDFThe present studies were carried out to determine the effects of a kappa-opioid receptor agonist on cytosolic Ca(2+) concentration, [Ca(2+)](i), and extracellular dopamine in undifferentiated PC12 cells. The kappa-opioid receptor agonist U-50,488H caused concentration-dependent increases in [Ca(2+)](i) and extracellular dopamine. Neither effect was blocked by the selective kappa-opioid receptor antagonist nor-binaltorphimine.
View Article and Find Full Text PDF