Hypertension is associated with poor outcome and higher mortality in patients with ischemic stroke. The impairment of adaptive vascular mechanisms under hypertensive condition compromises collateral blood flow after arterial occlusion in patients with acute ischemic stroke resulting in hypoperfusion. The increased oxidative stress caused by hypoperfusion is thought to be a trigger for the rapid evolution of ischemic infarct volume under hypertensive condition.
View Article and Find Full Text PDFMacroautophagy/autophagy delivers cytoplasmic cargo to lysosomes for degradation. In yeast, the single Atg8 protein plays a role in the formation of autophagosomes whereas in mammalian cells there are five to seven paralogs, referred to as mammalian Atg8s (mAtg8s: GABARAP, GABARAPL1, GABARAPL2, LC3A, LC3B, LC3B2 and LC3C) with incompletely defined functions. Here we show that a subset of mAtg8s directly control lysosomal biogenesis.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFAutophagy is a homeostatic process with multiple functions in mammalian cells. Here, we show that mammalian Atg8 proteins (mAtg8s) and the autophagy regulator IRGM control TFEB, a transcriptional activator of the lysosomal system. IRGM directly interacted with TFEB and promoted the nuclear translocation of TFEB.
View Article and Find Full Text PDFUnlabelled: Lysosomal damage activates AMPK, a regulator of macroautophagy/autophagy and metabolism, and elicits a strong ubiquitination response. Here we show that the cytosolic lectin LGALS9 detects lysosomal membrane breach by binding to lumenal glycoepitopes, and directs both the ubiquitination response and AMPK activation. Proteomic analyses have revealed increased LGALS9 association with lysosomes, and concomitant changes in LGALS9 interactions with its newly identified partners that control ubiquitination-deubiquitination processes.
View Article and Find Full Text PDFUnlabelled: Membrane integrity is essential for cellular survival and function. The spectrum of mechanisms protecting cellular and intracellular membranes is not fully known. Our recent work has uncovered a cellular system termed MERIT for lysosomal mbrane par, removal and replacemen.
View Article and Find Full Text PDFAMPK is a central regulator of metabolism and autophagy. Here we show how lysosomal damage activates AMPK. This occurs via a hitherto unrecognized signal transduction system whereby cytoplasmic sentinel lectins detect membrane damage leading to ubiquitination responses.
View Article and Find Full Text PDFEndomembrane damage elicits homeostatic responses including ESCRT-dependent membrane repair and autophagic removal of damaged organelles. Previous studies have suggested that these systems may act separately. Here, we show that galectin-3 (Gal3), a β-galactoside-binding cytosolic lectin, unifies and coordinates ESCRT and autophagy responses to lysosomal damage.
View Article and Find Full Text PDFMammalian homologs of yeast Atg8 protein (mAtg8s) are important in autophagy, but their exact mode of action remains ill-defined. Syntaxin 17 (Stx17), a SNARE with major roles in autophagy, was recently shown to bind mAtg8s. Here, we identified LC3-interacting regions (LIRs) in several SNAREs that broaden the landscape of the mAtg8-SNARE interactions.
View Article and Find Full Text PDFA unique thermostable amylosucrase from Bifidobacterium thermophilum was produced as a recombinant protein with the half-life of 577 h at 50 °C. By adding 1.0 M fructose, turanose yield was improved from 22.
View Article and Find Full Text PDFThe Ser/Thr protein kinase MTOR (mechanistic target of rapamycin kinase) regulates cellular metabolism and controls macroautophagy/autophagy. Autophagy has both metabolic and quality control functions, including recycling nutrients at times of starvation and removing dysfunctional intracellular organelles. Lysosomal damage is one of the strongest inducers of autophagy, and yet mechanisms of its activation in response to lysosomal membrane damage are not fully understood.
View Article and Find Full Text PDFAntimicrob Agents Chemother
September 2018
Host-directed therapy in tuberculosis is a potential adjunct to antibiotic chemotherapy directed at Ambroxol, a lead compound, emerged from a screen for autophagy-inducing drugs. At clinically relevant doses, ambroxol induced autophagy and and promoted mycobacterial killing in macrophages. Ambroxol also potentiated rifampin activity in a murine tuberculosis model.
View Article and Find Full Text PDFThe Ser/Thr protein kinase mTOR controls metabolic pathways, including the catabolic process of autophagy. Autophagy plays additional, catabolism-independent roles in homeostasis of cytoplasmic endomembranes and whole organelles. How signals from endomembrane damage are transmitted to mTOR to orchestrate autophagic responses is not known.
View Article and Find Full Text PDFAutophagy is a conserved eukaryotic process with metabolic, immune, and general homeostatic functions in mammalian cells. Mammalian autophagosomes fuse with lysosomes in a SNARE-driven process that includes syntaxin 17 (Stx17). How Stx17 translocates to autophagosomes is unknown.
View Article and Find Full Text PDFMacroautophagy/autophagy plays a role in unconventional secretion of leaderless cytosolic proteins. Whether and how secretory autophagy diverges from conventional degradative autophagy is unclear. We have shown that the prototypical secretory autophagy cargo IL1B/IL-1β (interleukin 1 β) is recognized by TRIM16, and that this first to be identified secretory autophagy receptor interacts with the R-SNARE SEC22B to jointly deliver cargo to the MAP1LC3B-II-positive sequestration membranes.
View Article and Find Full Text PDFMacroautophagy/autophagy is a homeostatic process delivering cytoplasmic targets, including damaged organelles, to lysosomes for degradation; however, it is not completely understood how compromised endomembranes are recognized by the autophagic apparatus. We have described previously that the TRIM family of proteins act as receptors for selective autophagy. In this study we uncovered the property of TRIMs to directly interact with members of the family of cytosolic lectins termed galectins.
View Article and Find Full Text PDFAutophagy is a process delivering cytoplasmic components to lysosomes for degradation. Autophagy may, however, play a role in unconventional secretion of leaderless cytosolic proteins. How secretory autophagy diverges from degradative autophagy remains unclear.
View Article and Find Full Text PDFSelective autophagy performs an array of tasks to maintain intracellular homeostasis, sterility, and organellar and cellular functionality. The fidelity of these processes depends on precise target recognition and limited activation of the autophagy apparatus in a localized fashion. Here we describe cooperation in such processes between the TRIM family and Galectin family of proteins.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2016
The surface of olivine NaFePO4 was modified with polythiophene (PTh) to develop a high-performance cathode material for use in Na-ion batteries. The Rietveld refinement results of the prepared material reveal that PTh-coated NaFePO4 belongs to a space group of Pnma with lattice parameters of a = 10.40656 Å, b = 6.
View Article and Find Full Text PDFA novel enzymatic process for cyclodextrin (CD) production was developed by utilizing sucrose as raw material instead of corn starch. Cyclodextrin glucanotransferase (CGTase) from Bacillus macerans was applied to produce the CDs from linear α-(1,4)-glucans, which were obtained by Neisseria polysaccharea amylosucrase (NpAS) treatment on sucrose. The greatest CD yield (21.
View Article and Find Full Text PDFSelectivity of autophagy is achieved by target recognition; however, the number of autophagy receptors identified so far is limited. In this study we demonstrate that a subset of tripartite motif (TRIM) proteins mediate selective autophagy of key regulators of inflammatory signaling. MEFV/TRIM20, and TRIM21 act as autophagic receptors recognizing their cognate targets and delivering them for autophagic degradation.
View Article and Find Full Text PDFAutophagy is a conserved homeostatic process active in all human cells and affecting a spectrum of diseases. Here we use a pharmaceutical screen to discover new mechanisms for activation of autophagy. We identify a subset of pharmaceuticals inducing autophagic flux with effects in diverse cellular systems modelling specific stages of several human diseases such as HIV transmission and hyperphosphorylated tau accumulation in Alzheimer's disease.
View Article and Find Full Text PDFThe present paradigms of selective autophagy in mammalian cells cannot fully explain the specificity and selectivity of autophagic degradation. In this paper, we report that a subset of tripartite motif (TRIM) proteins act as specialized receptors for highly specific autophagy (precision autophagy) of key components of the inflammasome and type I interferon response systems. TRIM20 targets the inflammasome components, including NLRP3, NLRP1, and pro-caspase 1, for autophagic degradation, whereas TRIM21 targets IRF3.
View Article and Find Full Text PDF