Publications by authors named "Seong-Who Kim"

TP53-induced glycolysis and apoptosis regulator (TIGAR) regulates redox homeostasis and provides the intermediates necessary for cell growth by reducing the glycolytic rate. During cellular senescence, cells undergo metabolic rewiring towards the glycolytic pathway, along with the development of the senescence-associated secretory phenotype (SASP), also known as the secretome. We observed that TIGAR expression increased during replicative senescence following the in vitro expansion of human mesenchymal stromal cells (MSCs) and that TIGAR knockout (KO) decreased SASP factors and triggered premature senescence with decelerated progression.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) have garnered attention for their regenerative and immunomodulatory capabilities in clinical trials for various diseases. However, the effectiveness of MSC-based therapies, especially for conditions like graft-versus-host disease (GvHD), remains uncertain. The cytokine interferon (IFN)-γ has been known to enhance the immunosuppressive properties of MSCs through cell-to-cell interactions and soluble factors.

View Article and Find Full Text PDF
Article Synopsis
  • Sirtuin 3 (SIRT3) is important for mitochondrial function under oxidative stress, but its role in radioresistant cancer cells, particularly in relation to glucose deprivation, is not well understood.
  • This study investigates SIRT3's impact on cell proliferation and death in two radioresistant head and neck cancer cell lines with different p53 statuses, revealing that SIRT3 levels are linked to cell sensitivity to glucose deficiency.
  • Findings show that the EZH2 protein represses SIRT3 expression in p53-deficient cells, and that regulating SIRT3 through EZH2 could serve as a potential biomarker for personalized treatment options in radiation-resistant cancer patients.
View Article and Find Full Text PDF

Adult hippocampal neurogenesis plays a pivotal role in maintaining cognitive brain function. However, this process diminishes with age, particularly in patients with neurodegenerative disorders. While small, non-coding microRNAs (miRNAs) are crucial for hippocampal neural stem (HCN) cell maintenance, their involvement in neurodegenerative disorders remains unclear.

View Article and Find Full Text PDF

The CRISPR-Cas9 system has significantly advanced regenerative medicine research by enabling genome editing in stem cells. Due to their desirable properties, mesenchymal stem cells (MSCs) have recently emerged as highly promising therapeutic agents, which properties include differentiation ability and cytokine production. While CRISPR-Cas9 technology is applied to develop MSC-based therapeutics, MSCs exhibit inefficient genome editing, and susceptibility to plasmid DNA.

View Article and Find Full Text PDF

Background: Toll-like receptor 4 (TLR4) conducts a highly regulated inflammatory process by limiting the extent of inflammation to avoid toxicity and tissue damage, even in bone tissues. Thus, it is plausible that strategies for the maintenance of normal bone-immunity to prevent undesirable bone damage by TLR4 activation can exist, but direct evidence is still lacking.

Methods: Osteoclast precursors (OCPs) obtained from WT or Slit3-deficient mice were differentiated into osteoclast (OC) with macrophage colony-stimulating factor (M-CSF), RANK ligand (RANKL) and lipopolysaccharide (LPS) by determining the number of TRAP-positive multinuclear cells (TRAP MNCs).

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM), the most aggressive and malignant glioma, has a poor prognosis. Although patients with GBM are treated with surgery, chemotherapy, and radiation therapy, GBM is highly resistant to treatment, making it difficult and expensive to treat. In this study, we analyzed the Gene Expression Profiling Interactive Analysis dataset, the Cancer Genome Atlas dataset, and Gene Expression Omnibus array data.

View Article and Find Full Text PDF

CD47 is expressed in all human cancer cells, including head and neck cancer, and initiates a signaling cascade to inhibit macrophage phagocytosis. However, the mechanism underlying CD47 overexpression has not been elucidated in radioresistant head and neck cancer. The present study demonstrated that decreased Tristetraprolin (TTP) expression induced a sustained overexpression of CD47 using reverse transcription-quantitative PCR and western blotting, and that CD47 overexpression prevented phagocytosis using a phagocytosis assay in a radioresistant HN31R cell line.

View Article and Find Full Text PDF

Stem cell technologies have presented explicit evidence of the neurodevelopmental hypothesis of schizophrenia. However, few studies investigated relevance of the schizophrenia genetic liability and the use of genetic reprogramming on pluripotent stem cells to the impaired neurodevelopment shown by stem cells. Therefore, this study sought to investigate the cellular phenotypes of induced neural stem cells (iNSCs) derived without genetic modification from patients with schizophrenia and from genetic high risk (GHR) individuals.

View Article and Find Full Text PDF

Heterologous ChAdOx1-BNT162b2 vaccination induces a stronger immune response than BNT162b2-BNT162b2. Here, we investigated the molecular transcriptome, germline allelic variants of immunoglobulin loci, and anti-Omicron antibody levels in 46 office and lab workers from the Republic of Korea following ChAdOx1-BNT162b2 vaccination. Anti-spike-specific IgG antibody levels against the ancestral SARS-CoV-2 strain increased from 70 AU/ml to 14,000 AU/ml to 142,000 AU/ml one, three and seven days following the second vaccination.

View Article and Find Full Text PDF

Therapy-induced senescence (TIS), a common outcome of current cancer therapy, is a known cause of late recurrence and metastasis and thus its eradication is crucial for therapy success. In this study, we introduced a conceptually novel strategy combining radiation-induced apoptosis-targeted chemotherapy (RIATC) with an effective glycolysis inhibitor, 2-deoxy-d-glucose (2DG) to target TIS. RIATC releases cytotoxic payload by amplification, continually increasing TIS, and this can be targeted by 2DG that stimulates an intrinsic apoptotic pathway in senescent cells, the senolysis; the senolytic 2DG also sensitizes cancer cells to chemo/radiation treatment.

View Article and Find Full Text PDF
Article Synopsis
  • Glioblastoma (GBM) progression is closely linked to metabolic changes, particularly through the role of Histone deacetylases (HDACs), with HDAC inhibitors showing promise in therapy; however, the specific mechanisms of metabolic reprogramming in GBM treatment remain unclear.
  • * The study focuses on HDAC2, which is highly expressed in GBM, revealing that its knockdown leads to cell death through the inhibition of GLUT3, a key glucose transporter, mediated by the increase of miR-3189.
  • * Ultimately, the research highlights the importance of HDAC2 in GBM development by regulating glucose metabolism, suggesting that targeting this pathway could offer new treatment strategies for patients.*
View Article and Find Full Text PDF

Despite recent breakthroughs in the development of direct KRAS inhibitors and modulators, no drugs targeting pan-KRAS mutant cancers are clinically available. Here, we report a novel strategy to treat pan-KRAS cancers using a caspase-3 cleavable peptide-drug conjugate that exploits enhanced albumin metabolism in KRAS altered cancers to deliver a cytotoxic agent that can induce a widespread bystander killing effect in tumor cells. Increased albumin metabolism in KRAS mutant cancer cells induced apoptosis via the intracellular uptake of albumin-bound MPD1.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are recognized as potential treatments for multiple degenerative and inflammatory disorders as a number of animal and human studies have indicated their therapeutic effects. There are also several clinically approved medicinal products that are manufactured using these cells. For such large-scale manufacturing requirements, the expansion of harvested MSCs is essential.

View Article and Find Full Text PDF

Objective: Through our previous clinical trials, the demonstrated therapeutic effects of MSC in chronic spinal cord injury (SCI) were found to be not sufficient. Therefore, the need to develop stem cell agent with enhanced efficacy is increased. We transplanted enhanced Wnt3asecreting human mesenchymal stem cells (hMSC) into injured spines at 6 weeks after SCI to improve axonal regeneration in a rat model of chronic SCI.

View Article and Find Full Text PDF

EPHA3, a member of the EPH family, is overexpressed in various cancers. We demonstrated previously that EPHA3 is associated with radiation resistance in head and neck cancer via the PTEN/Akt/EMT pathway; the inhibition of EPHA3 significantly enhances the efficacy of radiotherapy in vitro and in vivo. In this study, we investigated the mechanisms of PTEN regulation through EPHA3-related signaling.

View Article and Find Full Text PDF

Sirt6 is involved in multiple biological processes, including aging, metabolism, and tumor suppression. Sirt1, another member of the sirtuin family, functionally overlaps with Sirt6, but its role in tumorigenesis is controversial. In this study, we focused on cell death in association with Sirt6/Sirt1 and reactive oxygen species (ROS) in head and neck squamous cell carcinomas (HNSCCs).

View Article and Find Full Text PDF

Tumors are composed of subpopulations of cancer cells with functionally distinct features. Intratumoral heterogeneity limits the therapeutic effectiveness of cancer drugs. To address this issue, it is important to understand the regulatory mechanisms driving a subclonal variety within a therapy-resistant tumor.

View Article and Find Full Text PDF

Adult hippocampal neurogenesis supports the structural and functional plasticity of the brain, while its decline is associated with neurodegeneration common in Alzheimer's disease (AD). Although the dysregulation of certain microRNAs (miRNAs) in AD have been observed, the effects of miRNAs on hippocampal neurogenesis are largely unknown. In this study, we demonstrated miR-351-5p as a causative factor in hippocampal neural progenitor cell death through modulation of the mitochondrial guanosine triphosphatase (GTPase), Miro2.

View Article and Find Full Text PDF
Article Synopsis
  • p53 plays a crucial role in maintaining redox homeostasis by regulating glucose and glutamine metabolism, but the specifics of this mechanism remain unclear.
  • Two cancer subclones with different p53 mutations were studied under glucose-deprived and reactive oxygen species (ROS)-prone conditions to understand p53's influence on metabolism and cellular defense.
  • The subclone with functional p53 utilized glutamine more effectively to sustain energy and redox balance, while the p53-deficient subclone struggled with metabolic stress, suggesting p53 status could guide cancer treatment strategies involving metabolic drugs and ROS therapies.
View Article and Find Full Text PDF

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has attracted attention as a potential candidate for cancer therapy. However, many primary cancers are resistant to TRAIL, even when combined with standard chemotherapy. The mechanism of TRAIL resistance in cancer cells has not been fully elucidated.

View Article and Find Full Text PDF

Although macroautophagy/autophagy deficiency causes degenerative diseases, the deletion of essential autophagy genes in adipocytes paradoxically reduces body weight. Brown adipose tissue (BAT) plays an important role in body weight regulation and metabolic control. However, the key cellular mechanisms that maintain BAT function remain poorly understood.

View Article and Find Full Text PDF

Branched-chain amino acid (BCAA) catabolism and high levels of enzymes in the BCAA metabolic pathway have recently been shown to be associated with cancer growth and survival. However, the precise roles of BCAA metabolism in cancer growth and survival remain largely unclear. Here, we found that BCAA metabolism has an important role in human pancreatic ductal adenocarcinoma (PDAC) growth by regulating lipogenesis.

View Article and Find Full Text PDF